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Abstract. The article deals with the determination of initial conditions in a mixed prob-
lem for a two-dimensional hyperbolic equation. First, the uniqueness of the solution to the
corresponding initial–boundary value problem is established. Then, by imposing certain re-
strictions on the given data, the existence of a solution to this problem is demonstrated.
Furthermore, existence and uniqueness theorems are proved for the associated inverse prob-
lem of determining the initial conditions.
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1. Introduction

Inverse boundary value problems constitute one of the most important classes of problems
in mathematics and applied sciences. The primary objective of such problems is to deter-
mine unknown coefficients and/or the right-hand side of partial differential equations using
additional measurement data. These problems typically arise when the characteristics of an
object of interest cannot be observed directly. For example, they include the reconstruction
of field source properties from their measured values at certain points, or the recovery and
interpretation of an original signal based on a known output signal. Moreover, inverse prob-
lems occur in a wide range of fields, including medical imaging, geophysics, non-destructive
testing, acoustics, oil and gas exploration, and electromagnetic or X-ray tomography, etc.

In addition, the inverse boundary value problem may also involve reconstructing the
initial conditions from boundary observations over time or reconstructing the original terms
in the equation. In this article we will consider the inverse problem of determining the initial
conditions in a mixed problem for a two-dimensional hyperbolic equation. It should be noted
that inverse problems for hyperbolic equations are of crucial importance in various fields,
providing insight into systems in which wave propagation plays a key role. The fundamentals
of the theory and practice of studying inverse problems were established and developed in
the fundamental works of A.N. Tikhonov [25], M.M. Lavrentiev et al. [15], V.K. Ivanov et
al. [12], A.I. Prilepko et al. [20], and others. However, sufficiently complete bibliographies

∗ Corresponding author.

Yashar T. Mehraliyev

Baku State University, Baku, Azerbaijan

E-mail: yashar aze@mail.ru

Elvin I. Azizbayov
Academy of Public Administration under the President of the Republic of Azerbaijan, Baku, Azerbaijan

E-mail: eazizbayov@dia.edu.az



4 Inverse problem of determining initial conditions in a mixed problem

of recent works related to the study of inverse problems for partial differential equations
are reflected in many monographs and articles (e.g., [2]-[4], [6], [10], [11], [13], [14], [16]-[19],
[21], [22], [24], [26], [27]).

We provide a brief overview of related works on inverse boundary value problems for time-
fractional parabolic equations. In the monograph by Yuldashev [27], the unique generalized
solvability of multidimensional mixed problems for higher-order nonlinear partial differen-
tial equations was investigated. In this work, a new method was developed for analyzing the
unique solvability of mixed problems for differential equations that contain elementary op-
erators of higher-order mathematical physics on the left-hand side and a nonlinear function
on the right-hand side. In the paper by Eskin [6], inverse problems for second-order hy-
perbolic equations of general form with time-dependent coefficients were investigated, and
the time-dependent Lorentzian metric was determined from boundary measurements. The
article [19] investigates an inverse boundary value problem for a two-dimensional hyperbolic
equation with overdetermination conditions and establishes existence and uniqueness theo-
rems for the classical solution by applying the contraction mapping principle. In the work of
Sabitov and Zaynullov [23], inverse problems aimed at determining the initial conditions for
the string and telegraph equations were studied. The authors established criteria for unique-
ness and provided estimates ensuring the separation of small denominators from zero with
the corresponding asymptotic behavior, which made it possible to justify the convergence
within the class of regular solutions of these equations. Denisov [5] proposed an iterative
method for solving the inverse coefficient problem for a hyperbolic equation by reducing it
to a nonlinear operator equation with respect to the unknown coefficient and proved the
uniform convergence of the iterations to the solution of the inverse problem.

The numerical aspects of inverse problems for hyperbolic equations under various bound-
ary conditions have been extensively investigated in [1], [7]-[9] and the references therein.

The paper is organized as follows. Section 1 establishes the relevance of the study, for-
mulates its main objectives, and provides a comprehensive review of the related literature
with detailed comparisons to previous works. In Section 2, the mathematical formulation
of the problem under consideration is presented, and the definition of a classical solution is
introduced. Section 3 states and proves a theorem on the uniqueness of the solution to the
initial–boundary value problem. The existence of a classical solution is analyzed in Section
4. Section 5 is devoted to determining the initial conditions for the inverse boundary value
problem, and Section 6 summarizes the key findings of the study.

2. Mathematical Formulation of the Problem

Let DT = Q̄xy × {0 ≤ t ≤ T} be the closed bounded region in space, where Qxy defined
by the inequalities 0 < x < 1, 0 < y < 1, and let f(x, y, t), φ(x, y), ψ(x, y) be sufficiently
smooth functions of x, y ∈ [0, 1] and t ∈ [0, T ]. We first consider an initial boundary value
problem to find a function u(x, y, t) satisfying the following equation

utt(x, y, t)−∆u(x, y, t) = f(x, y, t) (x, y, t) ∈ DT , (1)

with the initial conditions

u(x, y, 0) = φ(x, y), ut(x, y, 0) = ψ(x, y) (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), (2)

and boundary conditions

ux(0, y, t) = u(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ), (3)

u(x, 0, t) = uy(x, 1, t) = 0 (0 ≤ x ≤ 1, 0 ≤ t ≤ T ), (4)

where ∆ = ∂2

∂x2 + ∂2

∂y2 .
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Definition 1. By a classical solution to problem (1)–(4) we mean a function u(x, y, t) ∈
C2(DT ) that satisfies (1) in DT , condition (2) in Q̄xy, and conditions (3), (4) on the sets in
Qyt = {(y, t) : 0 ≤ y ≤ 1, 0 ≤ t ≤ T} and Qxt = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}, respectively,
in the usual sense.

3. Uniqueness of the Solution to the Initial Boundary
Value Problem

Theorem 1. Problem (1)–(4) cannot have more than one solution, i.e. if problem (1)–(4)
has a solution, then it is unique.

Proof. Assume that the functions u1(x, y, t) and u2(x, y, t) are two distinct solutions to the
considered problem and their difference is v(x, y, t) = u1(x, y, t)− u2(x, y, t).

Obviously, the function v(x, y, t) satisfies the homogeneous equation

vtt(x, y, t)−∆v(x, y, t) = 0, (5)

with the conditions

v(x, y, 0) = vt(x, y, 0) = 0 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), (6)

vx(0, y, t) = v(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ), (7)

v(x, 0, t) = vy(x, 1, t) = 0 (0 ≤ x ≤ 1, 0 ≤ t ≤ T ). (8)

Let us prove that the function v(x, y, t) is identically equal to zero. Multiplying both
sides of the Equation (5) by the special function 2vt(x, y, t) and integrating the resulting
equality with respect to x and y over the interval [0, 1], we get

2

1∫
0

1∫
0

vtt(x, y, t)vt(x, y, t)dxdy − 2

1∫
0

1∫
0

∆v(x, y, t)vt(x, y, t)dxdy = 0. (9)

Using boundary conditions (7), (8), we have

2

1∫
0

1∫
0

vtt(x, y, t)vt(x, y, t)dxdy =
d

dt

1∫
0

1∫
0

v2t (x, y, t)dxdy,

2

1∫
0

vxx(x, y, t)vt(x, y, t)dx = 2vx(1, y, t)vt(1, y, t)− 2vx(0, y, t)vt(0, y, t)

−2

1∫
0

vx(x, y, t)vtx(x, y, t)dx =− d

dt

1∫
0

v2x(x, y, t)dx,

2

1∫
0

vyy(x, y, t)vt(x, y, t)dy = 2vy(x, 1, t)vt(x, 1, t)− 2vy(x, 0, t)vt(x, 0, t)

−2

1∫
0

vy(x, y, t)vty(x, y, t)dy =− d

dt

1∫
0

v2y(x, y, t)dy.
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Then, from (9), we obtain

d

dt

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy = 0 (0 ≤ t ≤ T ). (10)

If we use the notation

H(t) =

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy (0 ≤ t ≤ T ),

then from equality (10) it follows that the derivative of function H(t) is equal to zero, i.e.

H ′(t) = 0 (0 ≤ t ≤ T ).

Hence

H(t) =

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy = C, (11)

where C is an arbitrary constant.
So, from the initial condition (6) it follows that

H(0) =

1∫
0

1∫
0

(v2t (x, y, 0) + v2x(x, y, 0) + v2y(x, y, 0))dxdy = 0.

From (11) it is obvious that

H(0) = C = 0.

Setting C = 0 in (11), the procedure yields

1∫
0

1∫
0

(v2t (x, y, t) + v2x(x, y, t) + v2y(x, y, t))dxdy = 0 (0 ≤ t ≤ T ).

Since the integrand is non-negative, the following equalities hold:

vt(x, y, t) = 0, vx(x, y, t) = 0, vy(x, y, t) = 0.

Thus, we get

v(x, y, t) = const = C0.

Using the condition (7), we see that

v(x, y, 0) = C0 = 0.

Hence, we conclude that C0 = 0. So, it proves that

v(x, y, t) ≡ 0,

or

u1(x, y, t) ≡ u2(x, y, t).

It follows that if a solution to problem (1)–(4) exists, then it is unique. The theorem is
proved. ◀
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4. Existence of a Solution to the Problem

We seek a solution u(x, y, t) of problem (1)–(4) in the form

u(x, y, t) =

∞∑
n=1

∞∑
k=1

uk,n(t) cosλkx sin γny, (12)

where

λk =
π

2
(2k − 1) (k = 1, 2, ...), γn =

π

2
(2n− 1) (n = 1, 2, ...),

uk,n(t) = 4

1∫
0

1∫
0

u(x, y, t) cosλkx sin γnydxdy (k, n = 1, 2, ...).

Applying the method of separation of variables to determine the desired coefficients
uk,n(t) (k, n = 1, 2, ...) for the function u(x, y, t) from (1), (2), we obtain

u′′k,n(t) + µ2
k,nuk,n(t) = fk,n(t) (k, n = 1, 2, ...; 0 ≤ t ≤ T ), (13)

uk,n(0) = φk, u
′
k,n(0) = ψk,n (k, n = 1, 2, ...), (14)

where

µ2
k,n = λ2k + γ2n (k, n = 1, 2, ...),

fk,n(t) = 4

1∫
0

1∫
0

f(x, y, t) cosλkx sin γnydxdy (k, n = 1, 2, ...),

φk,n = 4

1∫
0

1∫
0

φ(x, y) cosλkx sin γnydxdy (k, n = 1, 2, ...),

ψk,n = 4

1∫
0

1∫
0

ψ(x, y) cosλkx sin γnydxdy (k, n = 1, 2, ...).

Solving the problem (13), (14), gives

uk,n(t) = φk,n cosµk,nt+
1

µk,n
ψk,nsinµk,nt

+
1

µk,n

t∫
0

fk,n(τ) sinµk,n(t− τ)dτ (k, n = 1, 2, ..., 0 ≤ t ≤ T ). (15)

Substituting the expressions of uk,n(t) (k, n = 1, 2, . . .) into (12) yields

u(x, y, t) =

∞∑
k=1

∞∑
n=1

{
φk,n cosµk,nt+

1

µk,n
ψk,n sinµk,nt

+
1

µk,n

t∫
0

Fk(τ ;u, a, b) sinµk,n(t− τ)dτ

 cosλkx sin γny. (16)

The following theorem is valid.

Theorem 2. Let the data of problem (1)–(4) satisfy the following conditions:
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D1) φ(x, y), φx(x, y), φxx(x, y), φy(x, y), φxy(x, y), φyy(x, y) ∈ C(Q̄xy),
φxxy(x, y), φxyy(x, y), φxxx(x, y), φyyy(x, y) ∈ L2(Qxy),
φx(0, y) = φ(1, y) = φxx(1, y) = 0 (0 ≤ y ≤ 1),
φ(x, 0) = φy(x, 1) = φyy(x, 0) = 0 (0 ≤ x ≤ 1);

D2) ψ(x, y), ψx(x, y), ψy(x, y) ∈ C(Q̄xy),
ψxx(x, y), ψyy(x, y) ∈ L2(Qxy),
ψx(0, y) = ψ(1, y) = 0 (0 ≤ y ≤ 1),
ψ(x, 0) = ψy(x, 1) = 0 (0 ≤ x ≤ 1);

D3) f(x, y, t) ∈ C(DT ), fx(x, y, t), fy(x, y, t) ∈ L2(DT ),
fx(0, y, t) = f(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ),
f(x, 0, t) = fy(x, 1, t) = 0 (0 ≤ x ≤ 1, 0 ≤ t ≤ T ),

then the function

u(x, y, t) =

∞∑
k=1

∞∑
n=1

{
φk,n cosµk,nt+

1

µk,n
ψk,n sinµk,nt

+
1

µk,n

t∫
0

Fk(τ ;u, a, b) sinµk,n(t− τ)dτ

 cosλkx sin γny,

is a classical solution to problem (1)–(4).

Proof. It is easy to see that

µ3
k,n ≤ (λ2k + γ2k)(λk + γn) = λ3k + λ2kγn + γ2kλk + γ3k.

By considering the foregoing relations, we have{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

≤ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ3k |φk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2kγn |φk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |φk,n|)2

) 1
2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ3n |φk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2k |ψk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ2n |ψk,n|)2
) 1

2

+ 2
√
2T


 T∫

0

∞∑
n=1

∞∑
k=1

(λ2k |fk,n(τ)|)2dτ


1
2

+2
√
2T

 T∫
0

∞∑
n=1

∞∑
k=1

(γ2n |fk,n(τ)|)2dτ


1
2

 .

From this inequality, we get{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

≤ 2
√
2 ∥φxxx(x, y)∥L2(Qxy)

+2
√
2 ∥φxyy(x, y)∥L2(Qxy)

+ 2
√
12 ∥φxxy(x, y)∥L2(Qxy)
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+2
√
2 ∥φyyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥ψyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥φyy(x, y)∥L2(Qxy)

+2
√
2T (∥fxx(x, y, t)∥L2(DT ) + ∥fyy(x, y, t)∥L2(DT )). (17)

Taking (17) into account, it is obvious that

|uxx(x, y, t)| ≤
∞∑
k=1

∞∑
n=1

λ2k |uk,n(t)|

≤

{ ∞∑
n=1

∞∑
k=1

µ−2
k,n

} 1
2
{ ∞∑

n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

<∞, (18)

|uyy(x, y, t)| ≤
∞∑
k=1

∞∑
n=1

γ2n |uk,n(t)|

≤

{ ∞∑
n=1

∞∑
k=1

µ−2
k,n

} 1
2
{ ∞∑

n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

<∞. (19)

From (18) and (19) it follows that the functions u(x, t), uxx(x, t), and uyy(x, t) are con-
tinuous in DT .

Now, from (13) it is not hard to see that{ ∞∑
n=1

∞∑
k=1

(µk,n

∥∥u′′k,n(t)∥∥C[0,T ]
)2

} 1
2

≤
√
2

{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

+
√
2
∥∥∥∥fx(x, y, t) + fy(x, y, t)∥C[0,T ]

∥∥∥
L2(Qxy)

.

It follows that the function utt(x, y, t) is continuous in DT .
By direct verification one can see that function u(x, y, t) satisfies equation (1) and con-

ditions (2)–(4), in the usual sense. Thus, Theorem 2 is proved completely. ◀

5. Inverse Problem of Finding Initial Conditions

Based on the direct problem (1)–(4), we consider the following inverse problems to find
the initial functions φ(x, y) and ψ(x, y). We are primarily interested in the functions
u(x, y, t), φ(x, y) and ψ(x, y) satisfying conditions (1)–(4), and the conditions

u(x, y, T ) = h(x, y), ut(x, y, T ) = g(x, y) (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), (20)

where h(x, y) and g(x, y) are sufficiently smooth function.
From (15) it is obvious that

u′k,n(t) = −µk,nφk,n sinµk,nt+ ψ
k,n

cosµk,nt

+

t∫
0

fk,n(τ) cosµk,n(t− τ)dτ (k, n = 1, 2, ...; 0 ≤ t ≤ T ).

Now, from (20), taking into account (16), we obtain

φk,n cosµk,nT +
1

µk,n
ψk,nsinµk,nT
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+
1

µk,n

T∫
0

fk,n(τ) sinµk,n(T − τ)dτ = hk,n (k, n = 1, 2, ...), (21)

−µk,nφk,n sinµk,nT + ψ
k,n

cosµk,nT

+

T∫
0

fk,n(τ) cosµk,n(T − τ)dτ = gk,n (k, n = 1, 2, ...), (22)

where

hk,n = 4

1∫
0

1∫
0

h(x, y) cosλkx sin γnydxdy (k, n = 1, 2, ...),

gk,n = 4

1∫
0

1∫
0

g(x, y) cosλkx sin γnydxdy (k, n = 1, 2, ...).

Multiplying both sides of the equations (21) and (22) by µk,n cosµk,nT and sinµk,nT ,
gives, in turn,

µk,nφk,n cos
2 µk,nT + ψk,nsinµk,nT cosµk,nT

+cosµk,nT

T∫
0

fk,n(τ) sinµk,n(T − τ)dτ = hk,nµk,n cosµk,nT (k, n = 1, 2, ...)

and

−µk,nφk,n sin
2 µk,nT + ψ

k,n
cosµk,nT sinµk,nT

+sinµk,nT

T∫
0

fk,n(τ) cosµk,n(T − τ)dτ = gk,n sinµk,nT (k, n = 1, 2, ...).

Subtracting the second result from the first yields

φk,n = hk,n cosµk,nT − gk,n
1

µk,n
sinµk,nT

+
1

µk,n

T∫
0

fk,n(τ) sinµk,nτdτ (k, n = 1, 2, ...). (23)

Multiplying both sides of the equations (21) and (22) by µk,n sinµk,nT and cosµk,nT ,
respectively, we will have

µk,nφk,n sinµk,nT cosµk,nT + ψk,nsin
2µk,nT

+sinµk,nT

T∫
0

fk,n(τ) sinµk,n(T − τ)dτ = µk,nhk,n sinµk,nT (k, n = 1, 2, ...),

−µk,nφk,n cosµk,nT sinµk,nT + ψ
k,n

cos2 µk,nT

+cosµk,nT

T∫
0

fk,n(τ) cosµk,n(T − τ)dτ = gk,n cosµk,nT (k, n = 1, 2, ...).
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Adding the last two relations term by term, it follows that

ψk,n = µk,nhk,n sinµk,nT + gk,n cosµk,nT −
T∫

0

fk,n(τ) cosµk,nτdτ (k, n = 1, 2, ...). (24)

After substituting the expressions of φk,n, ψk,n (k, n = 1, 2, ...) into (15), we obtain

uk,n(t) = hk,n cosµk,n(T − t)− 1

µk,n
gk,n sinµk,n(T − t)

− 1

µk,n

T∫
0

fk(τ) sinµk,n(t− τ)dτ +
1

µk,n

t∫
0

fk(τ) sinµk,n(t− τ)dτ. (25)

Theorem 3. We impose the following restrictions on the data of problem (1)–(4), (20):

I1) h(x, y), hx(x, y), hxx(x, y), hy(x, y), hxy(x, y), hyy(x, y) ∈ C(Q̄xy),
hxxy(x, y), hxyy(x, y), hxxx(x, y), hyyy(x, y) ∈ L2(Qxy),
hx(0, y) = h(1, y) = hxx(1, y) = 0 (0 ≤ y ≤ 1),
h(x, 0) = hy(x, 1) = hyy(x, 0) = 0 (0 ≤ x ≤ 1);

I2) g(x, y), gx(x, y), gy(x, y) ∈ C(Q̄xy),
gxx(x, y), gyy(x, y) ∈ L2(Qxy),
gx(0, y) = g(1, y) = 0 (0 ≤ y ≤ 1),
g(x, 0) = gy(x, 1) = 0 (0 ≤ x ≤ 1);

I3) f(x, y, t) ∈ C(DT ), fx(x, y, t), fy(x, y, t) ∈ L2(DT ),
fx(0, y, t) = f(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ),
f(x, 0, t) = fy(x, 1, t) = 0 (0 ≤ x ≤ 1, 0 ≤ t ≤ T ).

Then problem (1)–(4), (20) has a unique classical solution, and it is determined by the
series,

u(x, y, t) =

∞∑
k=1

∞∑
n=1

{
hk,n cosµk,n(T − t)− 1

µk,n
gk,n sinµk,n(T − t)

− 1

µk,n

T∫
0

fk(τ) sinµk,n(t− τ)dτ +
1

µk,n

t∫
0

fk(τ) sinµk,n(t− τ)dτ

 cosλkx sin γny,

φ(x, y) =

∞∑
k=1

∞∑
n=1

{
hk,n cosµk,n(T − t)− 1

µk,n
gk,n sinµk,n(T − t)

+
1

µk,n

T∫
0

fk,n(τ) sinµk,nτdτ

 cosλkx sin γny,

ψ(x, y) =

∞∑
k=1

∞∑
n=1

{
µk,nhk,n sinµk,nT + gk,n cosµk,nT

+

T∫
0

fk,n(τ) cosµk,nτdτ

 cosλkx sin γny.
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Proof. Proof of uniqueness. Let {u1(x, y, t), φ1(x, y), ψ1(x, y)} and
{u2(x, y, t), φ2(x, y), ψ2(x, y)} be two solutions of the problem (1)-(4), (20). We
denote by v(x, y, t) = u2(x, y, t) − u1(x, y, t), φ̄(x, y) = φ2(x, y) − φ1(x, y), and
ψ̄(x, y) = ψ2(x, y) − ψ1(x, y) the differences of these solutions. Then functions
v(x, y, t), φ̄(x, y) and ψ̄(x, y) satisfy the equation

vtt(x, y, t)−∆v(x, y, t) = 0,

with the conditions

v(x, y, 0) = φ̄(x, y), vt(x, y, 0) = ψ̄(x, y) (0 ≤ x ≤ 1, 0 ≤ y ≤ 1),

vx(0, y, t) = v(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ),

v(x, 0, t) = vy(x, 1, t) = 0 (0 ≤ x ≤ 1, 0 ≤ t ≤ T ),

u(x, y, T ) = 0, ut(x, y, T ) = 0 (0 ≤ x ≤ 1, 0 ≤ y ≤ 1).

Then, taking into account (20), (23), (24), we find

vk,n(t) = 4

1∫
0

1∫
0

v(x, y, t) cosλkx sin γnydxdy = 0 (k, n = 1, 2, ...),

φ̄k,n = 4

1∫
0

1∫
0

φ̄(x, y) cosλkx sin γnydxdy = 0 (k, n = 1, 2, ...),

ψ̄k,n = 4

1∫
0

1∫
0

ψ̄(x, y) cosλkx sin γnydxdy = 0 (k, n = 1, 2, ...).

As a result, we found that for any fixed t ∈ [0, T ] the functions v(x, y, t), φ̄(x, y), and
ψ̄(x, y) are orthogonal to the system of functions {cosλkx sin γny} (k, n = 1, 2, ...), which
is complete in L2(Qxy). This proves that v(x, y, t) = 0, φ̄(x, y) = 0, and ψ̄(x, y) = 0.
Thus, if there are two solutions u1(x, y, t), φ1(x, y), ψ1(x, y) and u2(x, y, t), φ2(x, y), ψ2(x, y)
to problem (1)–(4), (20), then u1(x, y, t) ≡ u2(x, y, t), φ1(x, y) ≡ φ2(x, y), and ψ1(x, y) ≡
ψ2(x, y). It follows that if a solution to problem (1)–(4), (20) exists, then it is unique. So,
the uniqueness of the solution to problem (1)–(4), (20) is proved.

Proof of existence. From (25) it is easy to see that{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

≤ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ3k |hk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2kγn |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |hk,n|)2

) 1
2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ3n |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2k |gk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ2n |gk,n|)2
) 1

2

+ 2
√
2T


 T∫

0

∞∑
n=1

∞∑
k=1

(λ2k |fk,n(τ)|)2dτ


1
2



Y.T. Mehraliyev, E.I. Azizbayov 13

+2
√
2T

 T∫
0

∞∑
n=1

∞∑
k=1

(γ2n |fk,n(τ)|)2dτ


1
2

 .

From the last inequality we get{ ∞∑
n=1

∞∑
k=1

(µ3
k,n ∥uk,n(t)∥C[0,T ])

2

} 1
2

≤ 2
√
2 ∥hxxx(x, y)∥L2(Qxy)

+ 2
√
2 ∥hxyy(x, y)∥L2(Qxy)

+ 2
√
12 ∥hxxy(x, y)∥L2(Qxy)

+2
√
2 ∥hyyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+2
√
2T (∥fxx(x, y, t)∥L2(DT ) + ∥fyy(x, y, t)∥L2(DT )). (26)

From (18) and (19), by virtue of (26), we conclude that functions u(x, t), uxx(x, t) and
uyy(x, t) are continuous in DT .

Now from (23) and (24), respectively, we have{ ∞∑
n=1

∞∑
k=1

(µ3
k,n |φk,n|)2

} 1
2

≤ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ3k |hk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2kγn |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |hk,n|)2

) 1
2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ3n |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2k |gk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ2n |gk,n|)2
) 1

2

+ 2
√
2T


 T∫

0

∞∑
n=1

∞∑
k=1

(λ2k |fk,n(τ)|)2dτ


1
2

+2
√
2T

 T∫
0

∞∑
n=1

∞∑
k=1

(γ2n |fk,n(τ)|)2dτ


1
2

 ,

{ ∞∑
n=1

∞∑
k=1

(µ2
k,n |ψk,n|)2

} 1
2

≤ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ3k |hk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2kγn |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λkγ
2
n |hk,n|)2

) 1
2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ3n |hk,n|)2
) 1

2

+ 2
√
2

( ∞∑
n=1

∞∑
k=1

(λ2k |gk,n|)2
) 1

2

+2
√
2

( ∞∑
n=1

∞∑
k=1

(γ2n |gk,n|)2
) 1

2

+ 2
√
2T


 T∫

0

∞∑
n=1

∞∑
k=1

(λ2k |fk,n(τ)|)2dτ


1
2
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+2
√
2T

 T∫
0

∞∑
n=1

∞∑
k=1

(γ2n |fk,n(τ)|)2dτ


1
2

 ,

or { ∞∑
n=1

∞∑
k=1

(µ3
k,n |φk,n|)2

} 1
2

≤ 2
√
2 ∥hxxx(x, y)∥L2(Qxy)

+2
√
2 ∥hxyy(x, y)∥L2(Qxy)

+ 2
√
12 ∥hxxy(x, y)∥L2(Qxy)

+2
√
2 ∥hyyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+2
√
2T (∥fxx(x, y, t)∥L2(DT ) + ∥fyy(x, y, t)∥L2(DT )), (27){ ∞∑

n=1

∞∑
k=1

(µ2
k,n |ψk,n|)2

} 1
2

≤ 2
√
2 ∥hxxx(x, y)∥L2(Qxy)

+2
√
2 ∥hxyy(x, y)∥L2(Qxy)

+ 2
√
12 ∥hxxy(x, y)∥L2(Qxy)

+2
√
2 ∥hyyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+ 2
√
2 ∥gyy(x, y)∥L2(Qxy)

+2
√
2T (∥fxx(x, y, t)∥L2(DT ) + ∥fyy(x, y, t)∥L2(DT )).

It’s obvious that

φ(x, y) =

∞∑
n=1

∞∑
k=1

φk,n cosλkx sin γny,

φxxx(x, y) = −
∞∑

n=1

∞∑
k=1

λ3kφk,n sinλkx sin γny,

φyyy(x, y) = −
∞∑

n=1

∞∑
k=1

γ3kφk,n cosλkx cos γny,

φxxy(x, y) = −
∞∑

n=1

∞∑
k=1

λ2kγkφk,n cosλkx sin γny,

φxyy(x, y) = −
∞∑

n=1

∞∑
k=1

λkγ
2
kφk,n cosλkx sin γny.

It is not hard to see that

∥φxxx(x, y)∥L2(Qxy)
≤ 1

4

{ ∞∑
n=1

∞∑
k=1

(µ3
k |φk,n|)2

} 1
2

,

∥φyyy(x, y)∥L2(Qxy)
≤ 1

4

{ ∞∑
n=1

∞∑
k=1

(µ3
k |φk,n|)2

} 1
2

,

∥φxxy(x, y)∥L2(Qxy)
≤ 1

4

{ ∞∑
n=1

∞∑
k=1

(µ3
k |φk,n|)2

} 1
2

,

∥φxyy(x, y)∥L2(Qxy)
≤ 1

4

{ ∞∑
n=1

∞∑
k=1

(µ3
k |φk,n|)2

} 1
2

.
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Thus, taking into account (27), we obtain

φ(x, y), φx(x, y), φxx(x, y), φy(x, y), φxy(x, y), φyy(x, y) ∈ C(Q̄xy),

φxxy(x, y), φxyy(x, y), φxxx(x, y), φyyy(x, y) ∈ L2(Qxy),

φx(0, y) = φ(1, y) = φxx(1, y) = 0 (0 ≤ y ≤ 1),

φ(x, 0) = φy(x, 1) = φyy(x, 0) = 0 (0 ≤ x ≤ 1).

Similarly, it can be shown that

ψ(x, y), ψx(x, y), ψy(x, y) ∈ C(Q̄xy),

ψxx(x, y), ψyy(x, y) ∈ L2(Qxy),

ψx(0, y) = ψ(1, y) = 0 (0 ≤ y ≤ 1),

ψ(x, 0) = ψy(x, 1) = 0 (0 ≤ x ≤ 1),

ψxx(x, y), ψyy(x, y) ∈ L2(Qxy).

It follows that the functions φ(x, y) and ψ(x, y) satisfy the conditions of Theorem 2.
It is easy to check that equation (1) and conditions (2)–(4), (20) are satisfied in the usual

sense. The theorem is proved. ◀

6. Concluding Remark

This paper investigates an initial-boundary value problem for the two-dimensional wave
equation in a rectangular domain subject to mixed Dirichlet and Neumann boundary
conditions. The objective is to recover the initial data, including the wave displacement
and velocity, from the final position and final velocity. By introducing the change of
variables k = x, δ = y, and τ = T − t, the inverse problem can be reformulated as a direct
problem, where the known final position and final velocity of the original system serve as
the initial data for the transformed problem. Consequently, the inverse problem considered
in this work plays a primarily formal role. Nevertheless, this limitation can be overcome by
allowing the observation point to vary within the spatial domain, a direction that will be
addressed in future work.

Acknowledgements The authors express their sincere gratitude to the anonymous
reviewers for their careful reading of the manuscript and for their valuable comments and
constructive suggestions, which have significantly improved the quality of this work.
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