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Abstract. This paper provides a justification of the collocation method for a system
of integral equations arising in boundary value problems for Maxwell’s equations. At
specifically chosen collocation points, the system of integral equations is replaced by a
system of algebraic equations, for which the existence and uniqueness of the solution are
established. The convergence of the solutions of the algebraic system to the exact solution
of the system of integral equations is proven, and the convergence rate of the method is
indicated.
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1. Introduction and Problem Statement

It is well known that one of the methods for solving boundary value problems for
Maxwell’s equations is to reduce the problem to a system of second kind integral equa-
tions. Clearly, such systems admit closed-form solutions only in very rare cases. Therefore,
the development of approximate methods with rigorous theoretical justification becomes
a matter of primary importance.

Let D ⊂ R3 be a bounded domain with a twice continuously differentiable boundary
Ω, and let n (x) = (n1 (x) , n2 (x) , n3 (x)) denote the outward unit normal at point x ∈ Ω.
Consider the following boundary value problems:

Interior Maxwell boundary value problem. Find two vector fields E, H ∈
C(1) (D)

⋂
C
(
D̄
)
satisfying the Maxwell’s equations

rotE − ikH = 0, rotH + ikE = 0 in D

and the boundary condition
[n,E] = f on Ω,
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4 On an approximate solution of one class of systems

where k is the wave number such that Imk ≥ 0, [a, b] denotes the vector cross product
of vectors a and b. Here, f = (f1, f2, f3) is a given tangential field with the additional
property that its surface divergence Divf exists in the sense of the limit integral definition
and is of class Hα (Ω), where by Hα (Ω) denote the space of all continuous functions on
Ω satisfying the Hölder condition with exponent α ∈ (0, 1].

Exterior Maxwell boundary value problem. Find two vector fields E, H ∈
C(1)

(
R3\D̄

)⋂
C
(
R3\D

)
satisfying the Maxwell’s equations in R3\D̄, the Silver-Müller

radiation condition [
H,

x

|x|

]
− E = o

(
1

|x|

)
, |x| → ∞,

and [
E,

x

|x|

]
+H = o

(
1

|x|

)
, |x| → ∞,

uniformly in all directions x/ |x|, and the boundary condition

[n,E] = f on Ω,

where the function f have the same meaning as in the interior Maxwell boundary value
problem.

Let

Φk (x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x ̸= y,

be the fundamental solution of the Helmholtz equation. As shown in [2, p. 126], the
electromagnetic field of a surface distribution of magnetic dipoles

E (x) = rot

∫
Ω

Φk (x, y)µ (y) dΩy,

H (x) =
1

ik
E (x) , x ∈ R3\D

with tangential density µ = (µ1, µ2, µ3) ∈ Hα (Ω), 0 < α < 1, solves the interior Maxwell
problem in D provided µ is a solution of the system of integral equations

µ (x)− 2

∫
Ω

[n (x) , rotx {Φk (x, y)µ (y)}] dΩy = −2f (x) , x ∈ Ω . (1)

It solves the exterior Maxwell problem in R3\D̄ provided µ is a solution of the system of
integral equations

µ (x) + 2

∫
Ω

[n (x) , rotx {Φk (x, y)µ (y)}] dΩy = 2f (x) , x ∈ Ω . (2)

It is worth noting that approximate methods for solving systems of integral equations
arising in conjugation boundary value problems for the Helmholtz equation in both two-
and three-dimensional spaces were studied in [7] and [5], respectively. In [9], solution
methods for systems of integral equations related to conjugation problems for Maxwell’s
equations were examined. The Cauchy problem for systems of nonlinear Volterra-type



E.H. Khalilov 5

integral equations was considered in [1], while in [10], numerical methods were proposed
for solving systems of hypersingular integral equations associated with a certain class of
boundary value problems for the Helmholtz equation. As can be seen, despite a significant
number of studies on approximate solutions to various boundary value problems using the
method of integral equation systems, approximate solutions to boundary value problems
for Maxwell’s equations using the integral equation systems (1) and (2) have not yet been
investigated. This paper is devoted to addressing this gap.

2. Main Results

It is worth emphasizing that the counterexample constructed by A.M. Lyapunov (see
[3, pp. 84–86]) demonstrates that, in general, the derivative of a single-layer potential
with a continuous density does not exist. However, taking into account the identity
(n (y) , µ (y)) = 0, ∀y ∈ Ω, we obtain (see [2, p. 60])

[n (x) , rotx {Φk (x, y)µ (y)}] = (n (x)− n (y) , µ (y)) gradxΦk (x, y)− µ (y)
∂Φk (x, y)

∂n (x)
,

where (a, b) denotes the scalar product of vectors a and b. Then it is easy to see that the
system of integral equations (1) can be rewritten in operator form as

(I − T )µT = −2fT, (3)

and the system of integral equations (2) as

(I + T )µT = 2fT, (4)

here the notation ”aT” denotes the transpose of the vector a, I is the identity operator
and

T =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 ,

where

(T11µ1) (x) = 2

∫
Ω

(
(n1 (x)− n1 (y))

∂Φk (x, y)

∂x1
− ∂Φk (x, y)

∂n (x)

)
µ1 (y) dΩy, x ∈ Ω,

(T12µ2) (x) = 2

∫
Ω

(n2 (x)− n2 (y))
∂Φk (x, y)

∂x1
µ2 (y) dΩy, x ∈ Ω,

(T13µ3) (x) = 2

∫
Ω

(n3 (x)− n3 (y))
∂Φk (x, y)

∂x1
µ3 (y) dΩy, x ∈ Ω,

(T21µ1) (x) = 2

∫
Ω

(n1 (x)− n1 (y))
∂Φk (x, y)

∂x2
µ1 (y) dΩy, x ∈ Ω,

(T22µ2) (x) = 2

∫
Ω

(
(n2 (x)− n2 (y))

∂Φk (x, y)

∂x2
− ∂Φk (x, y)

∂n (x)

)
µ2 (y) dΩy, x ∈ Ω,
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(T23µ3) (x) = 2

∫
Ω

(n3 (x)− n3 (y))
∂Φk (x, y)

∂x2
µ3 (y) dΩy, x ∈ Ω,

(T31µ1) (x) = 2

∫
Ω

(n1 (x)− n1 (y))
∂Φk (x, y)

∂x3
µ1 (y) dΩy, x ∈ Ω,

(T32µ2) (x) = 2

∫
Ω

(n2 (x)− n2 (y))
∂Φk (x, y)

∂x3
µ2 (y) dΩy, x ∈ Ω,

(T33µ3) (x) = 2

∫
Ω

(
(n3 (x)− n3 (y))

∂Φk (x, y)

∂x3
− ∂Φk (x, y)

∂n (x)

)
µ3 (y) dΩy, x ∈ Ω.

As can be seen, by taking into account the inequality (see [12, p. 400])

|n (y)− n (x)| ≤ M1 |y − x| , ∀x, y ∈ Ω,

it follows that the expressions (Tmpφ) (x), x ∈ Ω, m, p = 1, 3, are weakly singular in-
tegrals. Therefore, the operators Tmp, m, p = 1, 3, are compact in the space C (Ω).
Consequently, the solutions of the integral equation systems (3) and (4) can be studied
in the broader function space C3 (Ω) = C (Ω)×C (Ω)×C (Ω), equipped with the norm
∥ρ∥3 = max

m=1,3
∥ρm∥∞, where ρ = (ρ1, ρ2, ρ3) and ∥ρm∥∞ = max

x∈Ω
|ρm (x)|.

To justify the collocation method, we first divide the surface Ω into ”regular” ele-

mentary parts Ω =
N⋃
l=1

Ωl. A ”regular” elementary parts is defined as a set of points

satisfying the following conditions:
(1) For any l ∈ {1, 2, ..., N}, the elementary parts Ωl is closed, and its set of interior

points relative to Ω, denoted
0

Ωl, is non-empty. Moreover, mes
0

Ωl = mesΩl and j ∈

{1, 2, ...N} , j ̸= l,
0

Ωl

⋂ 0

Ωj = ∅ hold;
(2) For any l ∈ {1, 2, ..., N}, the elementary parts Ωl is a connected portion of the

surface Ω with a continuous boundary;
(3) For any l ∈ {1, 2, ..., N}, there exists a so-called reference point x (l) =

(x1 (l) , x2 (l) , x3 (l)) ∈ Ωl such that:

(3.1) rl(N) ∼ Rl(N) (rl (N) ∼ Rl (N) ⇔ C1 ≤ rl(N)
Rl(N) ≤ C2, where C1 and C2 are

positive constants independent of N), where rl (N) = min
x∈∂Ωl

|x− x (l)| and Rl (N) =

max
x∈∂Ωl

|x− x (l)|;

(3.2) Rl (N) ≤ r0
2 , where r0 is the radius of the standard sphere for Ω (see [12, pp.

400–401]);
(3.3) rj (N) ∼ rl (N) , ∀j ∈ {1, 2, ..., N}.
It is clear that r (N) ∼ R (N) and lim

N→∞
r (N) = lim

N→∞
R (N) = 0, where R (N) =

max
l=1, N

Rl (N) and r (N) = min
l=1, N

rl (N).

Lemma. [6]. When the surface Ω is partitioned into “regular” elementary parts Ω =
N⋃
l=1

Ωl, the following relation holds: R (N) ∼ 1√
N
.

1 From here on we will denote by M positive constants that are different in different inequalities.
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Let us now consider the 3N dimensional matrix T 3N = (tlj)
3N
l,j=1 with elements:

tll = 0 for l = 1, N ;

tlj = 2

(
(n1 (x (l))− n1 (x (j)))

∂Φk (x (l) , x (j))

∂x1
− ∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj

for l, j = 1, N and j ̸= l;

tl,N+l = 0 for l = 1, N ;

tl,N+j = 2 (n2 (x (l))− n2 (x (j)))
∂Φk (x (l) , x (j))

∂x1
mesΩj for l, j = 1, N and j ̸= l;

tl,2N+l = 0 for l = 1, N ;

tl,2N+j = 2 (n3 (x (l))− n3 (x (j)))
∂Φk (x (l) , x (j))

∂x1
mesΩj for l, j = 1, N and j ̸= l;

tN+l,l = 0 for l = 1, N ;

tN+l,j = 2 (n1 (x (l))− n1 (x (j)))
∂Φk (x (l) , x (j))

∂x2
mesΩj for l, j = 1, N and j ̸= l;

tN+l,N+l = 0 for l = 1, N ;

tN+l,N+j = 2

(
(n2 (x (l))− n2 (x (j)))

∂Φk (x (l) , x (j))

∂x2
− ∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj

for l, j = 1, N and j ̸= l;

tN+l,2N+l = 0 for l = 1, N ;

tN+l,2N+j = 2 (n3 (x (l))− n3 (x (j)))
∂Φk (x (l) , x (j))

∂x2
mesΩj for l, j = 1, N and j ̸= l;

t2N+l,l = 0 for l = 1, N ;

t2N+l,j = 2 (n1 (x (l))− n1 (x (j)))
∂Φk (x (l) , x (j))

∂x3
mesΩj for l, j = 1, N and j ̸= l;

t2N+l,N+l = 0 for l = 1, N ;

t2N+l,N+j = 2 (n2 (x (l))− n2 (x (j)))
∂Φk (x (l) , x (j))

∂x3
mesΩj for l, j = 1, N and j ̸= l;

t2N+l,2N+l = 0 for l = 1, N ;

t2N+l,2N+j = 2

(
(n3 (x (l))− n3 (x (j)))

∂Φk (x (l) , x (j))

∂x3
− ∂Φk (x (l) , x (j))

∂n (x (l))

)
mesΩj

for l, j = 1, N and j ̸= l.
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Proceeding in the same manner as in [4] and taking into account Lemma, it is not
difficult to show that the expressions

(
TN
mpφ

)
(x (l)) =

N∑
j=1

t(m−1)N+l, (p−1)N+j φ (x (j)) , m, p = 1, 3,

evaluated at the reference points x (l) , l = 1, N , represent cubature formulas for the
integrals (Tmpφ) (x), m, p = 1, 3, respectively, and moreover,

max
l=1, N

∣∣(Tmpφ) (x (l))−
(
TN
mpφ

)
(x (l))

∣∣ ≤ M
(
∥φ∥∞ N− 1

2 lnN + ω
(
φ,N− 1

2

))
,

where ω (φ, δ) is the modulus of continuity of the function φ ∈ C (Ω), i.e.

ω (φ, δ) = max
|x−y|≤δ
x,y∈Ω

|φ(x)− φ(y)| , δ > 0.

Let C3N be the space of vectors

z3N =
(
z3N1 , z3N2 , ..., z3N3N

)T
, z3Nl ∈ C, l = 1, 3N,

equipped with the norm
∥∥z3N∥∥ = max

l=1, 3N

∣∣z3Nl ∣∣, and let I3N denote the identity operator

in the space C3N . Then, if we denote by z3Nl , l = 1, N , the approximate values of
µ1 (x (l)); by z3NN+l, l = 1, N , the approximate values of µ2 (x (l)); and by z3N2N+l, l = 1, N ,
the approximate values of µ3 (x (l)), the systems of integral equations (3) and (4) are
reduced to systems of algebraic equations with respect to z3N ∈ C3N , which we write in
the form: (

I3N − T 3N
)
z3N = −2f3N (5)

and (
I3N + T 3N

)
z3N = 2f3N , (6)

respectively, where f3N = p3NfT and p3N : C3 (Ω) → C3N is a bounded linear operator
defined by

p3NfT = (f1 (x (1)) , ..., f1 (x (N)) , f2 (x (1)) , ..., f2 (x (N)) , f3 (x (1)) , ..., f3 (x (N)))
T
.

Theorem 1. Let Imk > 0 and f ∈ C3 (Ω). Then the systems of equations (3) and (5)

have unique solutions µT
∗ = (µ∗

1, µ
∗
2, µ

∗
3)

T ∈ C3 (Ω) and w3N ∈ C3N , respectively, and
the following estimate holds:∥∥w3N − p3NµT

∗
∥∥ ≤ M

(
ω
(
f,N− 1

2

)
+ ∥f∥3 N− 1

2 lnN
)
.
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Proof. To prove the theorem, we use G.M. Vainikko’s theorem on the convergence of
linear operator equations (see [11]). Let us verify the conditions of Theorem 4.2 from
[11], using the notations, definitions, and propositions provided therein. In work [2, p.
124] it is proved that if Imk > 0, then the interior Maxwell boundary value problem
admit at most one solution, i.e., if Imk > 0, then Ker (I − T ) = { 0 }. It is clear that
the operators I3N − T 3N are Fredholm operators of index zero. Taking into account the
method of partitioning the surface Ω into ”regular” elementary parts, it follows that for
any vector function ρ = (ρ1, ρ2, ρ3)

T ∈ C3 (Ω), the identity

lim
N→∞

∥∥p3Nρ
∥∥ = lim

N→∞
max
m=1,3

{
max
l=1,N

|ρm (x (l))|
}

= max
m=1,3

{
max
x∈Ω

|ρm (x)|
}

= ∥ρ∥3

holds. Therefore, the operator system P =
{
p3N

}
is linking the spaces C3 (Ω) and C3N .

Then f3N P→ fT, and by Definition 2.1 in [11], I3N − T 3N PP→ I − T . Since, by Definition
3.2 in [11], I3N → I is stable, it remains, by Proposition 3.5 and Definition 3.3 in
[11], to verify the compactness condition. According to Proposition 1.1 from [11], this is
equivalent to the existence of a relatively compact sequence

{
T3N z3N

}
⊂ C3 (Ω) such

that ∥∥T 3N z3N − p3N
(
T3N z3N

) ∥∥ → 0 at N → ∞,

given that ∀
{
z3N

}
, z3N ∈ C3N and

∥∥z3N∥∥ ≤ M . As
{
T3N z3N

}
, we choose the sequence

(
T3N z3N

)
(x) =

 3N∑
j=1

t
(1)
j (x) z3Nj ,

3N∑
j=1

t
(2)
j (x) z3Nj ,

3N∑
j=1

t
(3)
j (x) z3Nj

T

, x ∈ Ω,

where

t
(1)
j (x) = 2

∫
Ωj

(
(n1 (x)− n1 (y))

∂Φk (x, y)

∂x1
− ∂Φk (x, y)

∂n (x)

)
dΩy for j = 1 , N,

t
(1)
j (x) = 2

∫
Ωj−N

(n2 (x)− n2 (y))
∂Φk (x, y)

∂x1
dΩy for j = N, 2N,

t
(1)
j (x) = 2

∫
Ωj−2N

(n3 (x)− n3 (y))
∂Φk (x, y)

∂x1
dΩy for j = 2N, 3N,

t
(2)
j (x) = 2

∫
Ωj

(n1 (x)− n1 (y))
∂Φk (x, y)

∂x2
dΩy for j = 1, N,

t
(2)
j (x) = 2

∫
Ωj−N

(
(n2 (x)− n2 (y))

∂Φk (x, y)

∂x2
− ∂Φk (x, y)

∂n (x)

)
dΩy for j = N, 2N,

t
(2)
j (x) = 2

∫
Ωj−2N

(n3 (x)− n3 (y))
∂Φk (x, y)

∂x2
dΩy for j = 2N, 3N,

t
(3)
j (x) = 2

∫
Ωj

(n1 (x)− n1 (y))
∂Φk (x, y)

∂x3
dΩy for j = 1, N,
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t
(3)
j (x) = 2

∫
Ωj−N

(n2 (x)− n2 (y))
∂Φk (x, y)

∂x3
dΩy for j = N, 2N,

t
(3)
j (x) = 2

∫
Ωj−2N

(
(n3 (x)− n3 (y))

∂Φk (x, y)

∂x3
− ∂Φk (x, y)

∂n (x)

)
dΩy for j = 2N, 3N.

As can be seen, the expressions t
(m)
j (x), j = 1, 3N , m = 1, 3, are weakly singular

integrals. Therefore,∣∣∣∣∣∣
3N∑
j=1

t
(m)
j (x) z3Nj

∣∣∣∣∣∣ ≤ M
∥∥ z3N∥∥ , ∀x ∈ Ω,m = 1, 3.

Moreover, following the approach in [8], it is not difficult to show that∣∣∣∣∣∣
3N∑
j=1

t
(m)
j (x′) z3Nj −

3N∑
j=1

t
(m)
j (x′′) z3Nj

∣∣∣∣∣∣ ≤
≤ M

∥∥z3N∥∥ |x′ − x′′| |ln |x′ − x′′|| , ∀x′, x′′ ∈ Ω,m = 1, 3.

Hence, ∣∣(T3N z3N
)
(x)

∣∣ ≤ M
∥∥z3N∥∥ , ∀x ∈ Ω,

and∣∣(T3N z3N
)
(x′)−

(
T3N z3N

)
(x′′)

∣∣ ≤ M
∥∥ z3N∥∥ |x′ − x′′| |ln |x′ − x′′|| , ∀x′, x′′ ∈ Ω.

Therefore,
{
T3N z3N

}
⊂ C3 (Ω), and taking into account condition

∥∥z3N∥∥ ≤ M , we

obtain the uniform boundedness and equicontinuity of the sequence
{
T3N z3N

}
. Then,

by the Arzela–Ascoli theorem, the sequence
{
T3N z3N

}
is relatively compact. In addition,

by proceeding as in [4], one can show that∥∥T 3N z3N − p3N
(
T3N z3N

) ∥∥ → 0 at N → ∞.

As a result, applying Theorem 4.2 from [11], we find that equations (3) and (5) have

unique solutions µT
∗ = (µ∗

1, µ
∗
2, µ

∗
3)

T ∈ C3 (Ω) and w3N ∈ C3N , respectively, and

c1 δN ≤
∥∥w3N − p3NµT

∗
∥∥ ≤ c2 δN ,

where

c1 = 1/ sup
N≥N0

∥∥ I3N − T 3N
∥∥ > 0, c2 = sup

N≥N0

∥∥∥ (I3N − T 3N
)−1

∥∥∥ < +∞,

δN =
∥∥(I3N − T 3N

) (
p3NµT

∗
)
+ 2f3N

∥∥ .
Since

−2f3N = −2p3NfT = p3N
(
µT
∗ − TµT

∗
)
= p3NµT

∗ − p3N
(
TµT

∗
)
,
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then taking into account the error estimates of the cubature formulas for the integrals
(Tmpφ) (x), m, p = 1, 3, we obtain

δN =
∥∥T 3N

(
p3NµT

∗
)
− p3N

(
TµT

∗
)∥∥ ≤ M

(∥∥µT
∗
∥∥
3
N− 1

2 lnN + ω
(
µT
∗ , N

− 1
2

))
.

Moreover, following the same approach as in [8], one can show that

ω
(
TµT

∗ , δ
)
≤ M

∥∥µT
∗
∥∥
3
δ |ln δ| .

Then, taking into account the inequalities

ω
(
µT
∗ , N

− 1
2

)
= ω

(
−2fT + TµT

∗ , N
− 1

2

)
≤ ω

(
−2fT, N− 1

2

)
+ ω

(
TµT

∗ , N
− 1

2

)
≤

≤ M
(
ω
(
fT, N− 1

2

)
+

∥∥µT
∗
∥∥
3
N− 1

2 lnN
)

and ∥∥µT
∗
∥∥
3
=

∥∥∥ − 2 (I − T )
−1

fT
∥∥∥
3
≤ 2

∥∥∥ (I − T )
−1

∥∥∥ ∥∥fT
∥∥
3
,

we obtain
δN ≤ M

(
ω
(
f,N− 1

2

)
+ ∥f∥3 N− 1

2 lnN
)
.

The theorem is proven. ◀

In a similar way, the following theorem can be proven.

Theorem 2. Let Imk > 0 and f ∈ C3 (Ω). Then, the systems of equations (4) and (6)

have unique solutions µ̃T
∗ = (µ̃∗

1, µ̃
∗
2, µ̃

∗
3)

T ∈ C3 (Ω) and w̃3N ∈ C3N , respectively, and
the following estimate holds:∥∥ w̃3N − p3N µ̃T

∗
∥∥ ≤ M

(
ω
(
f,N− 1

2

)
+ ∥f∥3 N− 1

2 lnN
)
.
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