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Abstract. The sequence known as Narayana’s cows sequence is defined by the third-
order linear recurrence relation Nn = Nn−1 +Nn−3, for n ≥ 3, with the initial values
given by N0 = N1 = N2 = 1. In this paper, we explore the class of numbers known as b-
repdigits that can be represented as the sum of three terms from this sequence. Specifically,
we aim to identify all such numbers for bases in the range 2 ≤ b ≤ 30. Our approach
relies on precise lower bounds for linear forms in logarithms, along with an enhanced
version of the Baker-Davenport reduction method applied to Diophantine equations.
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1. Introduction

In the 14th century, the Indian mathematician Narayana Pandit wrote the remarkable
mathematical text Ganita Kaumudi, which includes a classical problem about the re-
production of cows. The scenario considers a cow that gives birth to one calf each year,
and from their fourth year onward, these calves also start producing one calf annually.
The question posed in this context is: how many calves will be born after 20 years? This
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situation can be modeled using a third-order linear recurrence relation defined as:

Nn = Nn−1 +Nn−3, for n ≥ 3,

with the initial conditions:

N0 = N1 = N2 = 1.

The first few terms of this sequence are:

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (sequence A000930).

This sequence, commonly referred to as the Narayana’s cows sequence, differs from the
well-known Fibonacci sequence in that each term is obtained by adding the previous
term to the term three steps earlier, creating a delayed recursion.

A positive integer is called a b-repdigit if it consists of repeated occurrences of a single
digit when written in base b. In this paper, we examine the class of b-repdigits that can
be expressed as the sum of three terms from the Narayana’s cows sequence, specifically
for bases in the range 2 ≤ b ≤ 30. Such a repdigit has the form:

Rb(a, ℓ) =
a(bℓ − 1)

b− 1
,

where a is a base-b digit satisfying 1 ≤ a ≤ b − 1, and ℓ ≥ 3 represents the number of
repeated digits.

The main goal of this paper is to identify all integer solutions to the Diophantine
equation:

Nn +Nm +Nq = Rb(a, ℓ),

under the conditions 0 ≤ m ≤ n ≤ q, 2 ≤ b ≤ 30, 1 ≤ a ≤ b−1, and ℓ ≥ 3. This equation
equates the sum of three Narayana numbers to a b-repdigit.

Similar problems involving recurrence sequences have been widely studied in the
mathematical literature. For instance, Luca [8] investigated repdigits in the Fibonacci
and Lucas sequences, while Faye and Luca [7] showed that the Pell sequence does not
contain any repdigits. Moreover, the study of repdigits in generalized Fibonacci sequences
has been extended to sums involving two or three terms [4], [3] and even to combinations
of four terms from various recursive sequences [10], [11]. Our approach builds upon the
foundational work presented in [2].

This paper extends the investigation to the Narayana’s cows sequence by systemat-
ically identifying all numbers that can be expressed as sums of three terms from this
sequence. We focus on the non-trivial cases where ℓ ≥ 3 and explore the algebraic struc-
ture that underlies these Diophantine problems.

The results presented here provide a deeper understanding of the distribution of
Narayana numbers across different numeral bases, offering new insights into the occur-
rence of repdigits within this specific recursive context.

More specifically, our aim is to find all integer solutions to the Diophantine equation

Nn +Nm +Nq = a

(
bℓ − 1

b− 1

)
, (1)
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where the parameters (n,m, q, ℓ, a, b) are integers satisfying the constraints 0 ≤ q ≤ m ≤
n, 2 ≤ b ≤ 30, 1 ≤ a ≤ b− 1, and ℓ ≥ 3.

Our main result regarding the solutions of equation (1) is as follows:

Theorem 1. The Diophantine equation (1) admits only finitely many non-trivial integer
solutions (n,m, q, ℓ, a, b) under the constraints 0 ≤ q ≤ m ≤ n, 2 ≤ b ≤ 30, 1 ≤ a ≤ b−1,
and ℓ ≥ 3. Furthermore, all such solutions with ℓ ≥ 3 are explicitly listed in Section 5.

As immediate consequences of this result, we derive the following corollaries:

Corollary 1. No number can be a b-repdigit in more than one base b ≤ 30 while
satisfying equation (1).

Corollary 2. The maximum possible value of ℓ for which equation (1) has a solution is
ℓ = 10. Specifically, we have:

N30 +N18 +N10 = 59048 = 2

(
310 − 1

3− 1

)
= [2222222222]3.

Corollary 3. The largest b-repdigit expressible as the sum of three Narayana numbers
with b ≤ 30 is

591890 = [qqqqq]28 = N36 +N26 +N16.

Corollary 4. The only Mersenne prime that can be expressed as a sum of three Narayana
numbers is

31 = [11111]2 = N8 +N7 +N7 = N9 +N6 +N6 = N9 +N7 +N4

= N10 +N3 +N0 = N10 +N3 +N1 = N10 +N3 +N2.

Additionally, no single Narayana number is a repdigit.

2. Preliminaries and Notations

In this section, we provide an overview of some fundamental properties of the Narayana’s
cows sequence, which is crucial for our subsequent analysis.

The Narayana’s cows sequence (Nn)n≥0 is governed by a characteristic polynomial
that captures its recursive structure. This polynomial is given by:

f(x) = x3 − x2 − 1,

which is known to be irreducible over the rational field Q[x]. This polynomial has a single
positive real root, denoted by α, and a pair of complex conjugate roots, β and γ, such
that |β| = |γ| < 1. The approximate numerical value of the dominant root is α ≈ 1.46557.

We summarize several key properties of this sequence in the following lemma.

Lemma 1. For the Narayana’s cows sequence (Nn)n≥0, the following properties hold:

1. Growth Bounds:
αn−2 ≤ Nn ≤ αn−1, for all n ≥ 1.
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2. Binet-like Representation:

Nn = a1α
n + a2β

n + a3γ
n, for all n ≥ 0,

where the coefficients are given by:

a1 =
α

(α− β)(α− γ)
, a2 =

β

(β − α)(β − γ)
, a3 =

γ

(γ − α)(γ − β)
.

3. Alternative Form:
Nn = Cαα

n+2 + Cββ
n+2 + Cγγ

n+2,

where

Cx =
1

x3 + 2
,

which offers a more refined approximation of Nn for large n.
4. Bounds on the Dominant Root:

1.45 < α < 1.5, 5 < C−1
α < 5.15.

5. Small Remainder Term:
ζn = Cββ

n+2 + Cγγ
n+2,

satisfies

|ζn| <
1

2
, for all n ≥ 1.

Proof. Part (a) can be established through mathematical induction, leveraging the defi-
nition of the Narayana sequence. The Binet-like expression in part (b) is a classical result
in the study of linear recurrence sequences, as presented in [12]. The reformulation in part
(c) follows directly from (b) by isolating the dominant term. Part (d) is a straightforward
numerical approximation, and (e) is derived using the triangle inequality and the known
magnitudes of β and γ. For brevity, we omit the detailed steps here. ◀

Definition. The minimal primitive polynomial for Cα over the integers is given by:

31x3 − 31x2 + 9x− 1,

with all its roots lying within the unit circle, reflecting its stability as a scaling factor.

3. Upper Bounds for the Number of Solutions

In this section, we aim to derive upper bounds for the possible values of n that appear in
the solutions of equation (1). We assume that the tuple (n,m, q, ℓ, a, b) represents a valid
set of positive integers satisfying this equation. Our first step is to establish a relationship
between the parameters ℓ and n, which will be crucial in proving Theorem 1.

Lemma 2. If n ≥ 4 and equation (1) holds, then the parameters ℓ and n satisfy the
inequality:

(n− 2)
logα

log b
< ℓ < 1.5n.
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Proof. From Lemma 1 (a), we have the inequality

αn−2 ≤ Nn +Nm +Nq = a

(
bℓ − 1

b− 1

)
< bℓ,

which leads to the bound

(n− 2)
logα

log b
< ℓ.

To establish the upper bound, we note that

bℓ−1 < a

(
bℓ − 1

b− 1

)
= Nn +Nm +Nq ≤ 3αn−1.

Given that b ≥ 2 and α < 1.5, we can further simplify this to obtain:

ℓ < 1 +
log 3

log b
+ (n− 1)

logα

log b
< 3 + (n− 1)

log 1.5

log 2
< 1.5n,

which holds for all n ≥ 4, thus completing the proof. ◀

Next, we proceed to find a more precise upper bound on the parameter n.

3. 1. Deriving an Upper Bound for n

Starting from Lemma 1 and equation (1), we can rewrite this relationship as:

Cαα
n+2 − abℓ

b− 1
= −Nm −Nq −

a

b− 1
− ζn.

Taking the absolute value of this equation and dividing by Cαα
n+2, we obtain:∣∣∣∣1− abℓ

Cααn+2(b− 1)

∣∣∣∣ < Nm

Cααn+2
+

Nq

Cααn+2
+

3

2Cααn+2

≤ αm−1

Cααn+2
+

αq−1

Cααn+2
+

3

2Cααn+2

<
5.15αm−1

αn+2
+

5.15αq−1

αn+2
+

7.725

αn+2
.

Given that 1.45 < α, this can be further simplified to:∣∣∣∣α−(n+2)bℓ
a

Cα(b− 1)
− 1

∣∣∣∣ < 8

αn−m
.

We now define the following notation:

γ1 := α, γ2 := b, γ3 :=
a

Cα(b− 1)
, b1 := −(n+ 2), b2 := ℓ, b3 := 1, (2)

and introduce the quantity
Λ1 := γb1

1 γb2
2 γb3

3 − 1.
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From the above, we obtain the inequality:

|Λ1| <
8

αn−m
. (3)

To proceed, we need a lower bound for |Λ1|, which we derive using the powerful result
from Matveev [9], as restated in Theorem 9.4 of [5].

We now proceed to apply Matveev’s result from [9] with t = 3 and the parameters
defined in equation (2). We first note that the algebraic number field containing γ1, γ2, γ3
is given by K = Q(α), which has degree

D = [K : Q] = deg(x3 − x2 − 1) = 3.

The logarithmic heights of these parameters are as follows:
- for γ1 = α, we have

h(γ1) =
logα

3
,

- for γ2 = b, the height is simply

h(γ2) = log b.

Thus, we can choose the initial bounds:

A1 = logα, A2 = 3 log b.

Next, we estimate the logarithmic height of γ3 using the general properties of loga-
rithmic heights. From Definition, we have

h

(
a

Cα(b− 1)

)
≤ h

(
a

b− 1

)
+ h(Cα) = log(b− 1) + h(Cα). (4)

Given that the minimal primitive polynomial of Cα over Z is 31x3 − 31x2 + 10x− 1,
this height is approximately

h(Cα) =
log 31

3
.

Substituting this in equation (4), we obtain

h(γ3) ≤ log(b− 1) +
log 31

3
< 2 log b.

Hence, we can choose
A3 = 6 log b.

Additionally, by Lemma 2, we have

B = max{n+ 2, ℓ, 1} = n+ 2.

To apply Matveev’s result from [9], we must verify that Λ1 ̸= 0. If Λ1 = 0, then we
would have the identity

Cαα
n+2 =

abℓ

b− 1
, (5)
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which implies

Cββ
n+2 =

abℓ

b− 1

when the Galois automorphism σ is applied, such that σ(α) = β. However, this leads to
a contradiction because ∣∣Cββ

n+2
∣∣ < |Cβ | = 0.407506 . . . < 1,

while the right-hand side of equation (5) is at least 1 for all ℓ ≥ 2. Thus, we conclude
that Λ1 ̸= 0.

Applying Matveev’s result from [9] now gives the lower bound

Λ1 > exp
(
−1.4× 306 × 34.5 × 32(1 + log 3)(1 + log(n+ 2))(logα)(3 log b)(6 log b)

)
,

which must be smaller than the upper bound obtained in inequality (3). Taking the
natural logarithm on both sides yields

(n−m) logα− log 8 < 2.1013(1 + log(n+ 2)) log2 b.

Given that 1 + log(n+ 2) ≤ 2 log n for n ≥ 5, this simplifies to

(n−m) logα < 1.1× 1014 log n log2 b. (6)

Next, to derive an upper bound on n in terms of q, we return to equation (1) and
rearrange it as

Cαα
n+2 + Cαα

m+2 − abℓ

b− 1
= −ζn − ζm −Nq −

a

b− 1
.

This leads to the inequality∣∣∣∣Cαα
n+2(1 + αm−n)− abℓ

b− 1

∣∣∣∣ < Nq + 2.

Dividing this by Cαα
n+2(1 + αm−n) gives∣∣∣∣α−(n+2)bℓ
a

(b− 1)Cα(1 + αm−n)

∣∣∣∣ < Nq

Cααn+2(1 + αm−n)
+

2

Cααn+2(1 + αn)
<

<
5.15αq−1

Cααn+2(1 + αm−n)
+

5

αn
<

2

αn−q
× 1

1 + αm−n
+

5

αn
<

1

αn−q
+

5

αn
,

which reduces to ∣∣∣∣α−(n+2)bℓ
a

(b− 1)Cα(1 + αm−n)

∣∣∣∣ < 6

αn−q
. (7)

We now define the parameters:

γ1 := α, γ2 := b, γ3 :=
a

(b− 1)Cα(1 + αm−n)
, b1 := −(n+ 2), b2 := ℓ, b3 := 1.
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and the corresponding expression

Λ2 := γb1
1 γb2

2 γb3
3 − 1.

From equation (7), we have the bound

|Λ2| <
6

αn−q
. (8)

To derive a lower bound for this quantity using Matveev’s theorem [9], we proceed as
before, setting the relevant parameters. Here, we take the number field K = Q(α) with
degree D = 3, and the height bounds as:

A1 = logα, A2 = 3 log b, B = n+ 2.

Next, we estimate the height of γ3 in this context. Using the properties of logarithmic
heights, we have:

h(γ3) ≤ 3 log b+
(n−m) logα

3
.

Substituting the earlier bound from equation (6), we find:

h(γ3) < 3 log b+
1.1× 1014 log n log2 b

3
.

Thus, we can set

A3 = 1.2× 1014 log n log2 b.

With these parameters, applying Matveev’s result provides a lower bound for |Λ2|,
which we then compare to the upper bound in equation (8) to conclude that

(n− q) logα− log 6 < 7.5× 1026 log2 n log3 b.

This further simplifies to:

(n− q) logα < 7.5× 1026 log2 n log3 b.

Next, to find an upper bound for n in terms of b, we revisit equation (1) and rewrite
it as:

Cαα
n+2 + Cαα

m+2 + Cαα
q+2 − abℓ

b− 1
= −ζn − ζm − ζq −

a

b− 1
.

This leads to the inequality:∣∣∣∣Cαα
n+2(1 + αm−n + αq−n)− abℓ

b− 1

∣∣∣∣ < 5

2
.

Dividing by Cαα
n+2(1 + αm−n + αq−n) gives:∣∣∣∣α−(n+2)bℓ

a

(b− 1)Cα(1 + αm−n + αq−n)
− 1

∣∣∣∣ < 2.1

αn
. (9)
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For this third application of Matveev’s result, we define:

γ1 := α, γ2 := b, γ3 :=
a

(b− 1)Cα(1 + αm−n + αq−n)
,

b1 := −(n+ 2), b2 := ℓ, b3 := 1,

Λ3 = γb1
1 γb2

2 γb3
3 − 1.

From equation (9), we have the upper bound:

|Λ3| <
2.1

αn
.

As before, we ensure that Λ3 ̸= 0 by verifying that this expression cannot vanish.
Using the same parameters as in the previous steps:

D = 3, A1 = logα, A2 = 3 log b, B = n+ 2.

The height of γ3 in this context is estimated as:

h(γ3) ≤ h

(
a

(b− 1)Cα

)
+ h(1 + αm−n + αq−n)

≤ 2 log b+ h(αm−n + αq−n) + log 2

≤ 2 log b+
(n−m) logα

3
+

(n− q) logα

3
+ 2 log 2

< 4 log b+
(n−m) logα

3
+

(n− q) logα

3

< 4 log b+
1

3

(
1.1× 1014 log n log2 b+ 7.5× 1026 log2 n log3 b

)
,

which allows us to set
A3 = 1.5× 1027 log2 n log3 b.

Applying Matveev’s result again, we obtain the final bound:

n logα− log(2.1) < 9.3× 1039 log3 n log4 b.

which reduces to
n < 2.5× 1040 log3 n log4 b,

which can be rewritten as:
n

log3 n
< 2.5× 1040 log4 b. (10)

Next, we apply an analytical argument, as developed by Sanchez and Luca in [13], to
further refine this bound.

We now proceed with the final step of our analysis, using the bound from equation
(10) to tighten our estimate for n. Applying the analytical lemma:

Lemma 3. If x and T are real numbers with T > 162 and

x

log2 x
< T, then x < 4T log2 T.
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We substitute T = 2.5× 1040 log4 b into the bound from equation (10), yielding:

n < 4
(
2.5× 1040 log4 b

) (
log(2.5× 1040 log4 b)

)2
<

(
1041 log4 b

)
(93.1 + 4 log b)

2

< 1041 log4 b (132.2 log b)
2

< 1.75× 1045 log6 b.

In the above estimates, we used the fact that 93.1 + 4 log b < 132.2 log b for all b ≥ 2.
Combining this with Lemma 2 and equation (1) (which gives ℓ < 1.5n and m ≤ n), we
can summarize our findings as follows:

Theorem 2. Let (n,m, q, ℓ, a, b) be a solution of equation (1) with ℓ ≥ 3, b ≥ 2, and
1 ≤ a ≤ b− 1. Then,

max(ℓ,m) ≤ n < 1.75× 1045 log6 b.

Remark. For a fixed base b ≥ 2, equation (1) has only finitely many possible solutions.

Next, we focus on further reducing this bound using the reduction method developed
by Dujella and Pethő [6], which generalizes a classical result of Baker and Davenport [1].
This approach will allow us to refine the upper limit on n considerably.

4. Reduction Lemma and Improved Bounds

We begin with a few elementary properties of the exponential function that will be
instrumental in the reduction steps.

Lemma 4. For any non-zero real number x, the following hold:

1. If 0 < x < 1, then 0 < x < |ex − 1|.
2. If x < 0 and |ex − 1| < 1

2 , then |x| < 2|ex − 1|.

We define the quantity

Γ1 := ℓ log b− (n+ 2) logα+ log

(
a

Cα(b− 1)

)
,

noting that Γ1 ̸= 0 since eΓ1 − 1 = Λ1 ̸= 0.

Lemma 5. If m = 0 and n ≥ 7, then

0 < |Γ1| <
16

αn
.

Proof. If m = 0, then equation (3) can be rewritten as

|eΓ1 − 1| < 8

αn
.



268 On b−repdigits which are sums of three Narayana numbers with a consequence

If Γ1 > 0, we apply part (a) of Lemma 1 to obtain

|Γ1| = Γ1 < |eΓ1 − 1| < 8

αn
.

If instead Γ1 < 0, then the condition |eΓ1 − 1| < 1
2 holds for all n ≥ 7, allowing us to

use part (b) of Lemma 1 to get

|Γ1| < 2|eΓ1 − 1| < 16

αn
.

In both cases, we have the desired bound. ◀

Lemma 6. If m ≥ 1, then

0 < Γ1 <
8

αn−m
.

Proof. Starting from equation (3), we have

|eΓ1 − 1| < 8

αn−m
.

Additionally, from equation (1) and Lemma 1, we know that

Cαα
n+2 = Nn − ζn < Nn +

1

2
< Nn +Nm +Nq <

abℓ

b− 1
,

which ensures that Γ1 > 0. Thus, by part (a) of Lemma 1, we obtain

Γ1 < |eΓ1 − 1| < 8

αn−m
.

◀

To proceed, we restrict our attention to bases b in the range 2 ≤ b ≤ 30 for com-
putational feasibility. This choice, while somewhat arbitrary, covers a wide spectrum of
practical cases without significantly changing the nature of our results.

The following lemma, due to Bravo, Gomez, and Luca [3], is a refinement of a classic
result by Dujella and Pethő [6], itself a generalization of the original Baker-Davenport
reduction [1]. We will use this result to further reduce our bounds on n.

Lemma 7. Let A,B, γ, µ be positive real numbers and M a positive integer. If p
q is

a convergent of the continued fraction expansion of the irrational number γ such that
q > 6M , define

ϵ := ∥µq∥ −M∥γq∥,
where ∥ · ∥ denotes the distance to the nearest integer. If ϵ > 0, then the inequality

0 < |uγ − v + µ| < AB−w

has no positive integer solutions (u, v, w) under the conditions

u ≤ M and w ≥ log (Aq/ϵ)

logB
.
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4. 1. Bounding n: Step 1

Assume first that m = 0. By substituting the expression of Γ1 from Lemma 5 into the
corresponding inequality and dividing through by log α, we obtain:

0 <

∣∣∣∣∣∣ℓ
(
log b

logα

)
− n+

 log
(

a
(b−1)Cα

)
logα

− 2

∣∣∣∣∣∣ < 42α−n. (11)

This inequality is now suitable for an application of Lemma 7 using the following
parameters:

u := ℓ, v := n, w := n, γ :=
log b

logα
, µ :=

log
(

a
(b−1)Cα

)
logα

− 2, A := 43, B := α.

Note that γ is irrational, since α > 1 is a unit in the ring of integers OK of the number
field K, implying that α and b are multiplicatively independent.

We set the bound M := Mb = 1.75×1045 log6 b. Applying Lemma 7 to inequality (11)
for all values b ∈ {2, . . . , 30} and a ∈ {1, . . . , b− 1}, a computational check using Mathe-
matica shows that if m = 0, then any solution (n, 0, q, ℓ, a, b) to equation (1) must satisfy
n ≤ 328.

We now consider the case m ≥ 1. In this situation, Lemma 6 yields:

0 < ℓ

(
log b

logα

)
− n+

 log
(

a
(b−1)Cα

)
logα

− 2

 < 22α−(n−m). (12)

Once again, applying Lemma 7 to inequality (12) for each b ∈ {2, . . . , 30} and a ∈
{1, . . . , b − 1}, we deduce that for all solutions (n,m, q, ℓ, a, b) of (1) with m ≥ 1, the
difference n−m must lie in the interval [0, 328].

4. 2. Bounding n: Step 2

In this step, we aim to derive an upper bound on n − q using the previous bound on
n−m.

We define the quantity

Γ2 = ℓ log b− (n+ 2) logα+ log

(
a

(b− 1)Cα(1 + αm−n)

)
,

and note that inequality (8) is equivalent to∣∣eΓ2 − 1
∣∣ < 6

αn
. (13)

Since eΓ2 − 1 = Λ2 ≠ 0, we conclude that Γ2 ̸= 0. From inequality (13) and Lemma
2, it follows that

0 < |Γ2| <
12

αn
.
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Dividing this inequality by log α and substituting the expression for Γ2, we obtain

0 <

∣∣∣∣∣∣ℓ
(
log b

logα

)
− n+

 log
(

a
(b−1)Cα(1+αm−n)

)
logα

− 2

∣∣∣∣∣∣ < 32α−(n−q). (14)

We now apply Lemma 7 again, with the following parameters:

u := ℓ, v := n, w := n, γ :=
log b

logα
, A := 33, B := α, µ :=

log
(

a
(b−1)Cα(1+αm−n)

)
logα

− 2.

By setting M := Mb = 1.75 × 1045 log6 b, we apply Lemma 7 to inequality (14) for
all choices of b ∈ {2, . . . , 30}, a ∈ {1, . . . , b − 1}, and n −m ∈ {0, . . . , 328}. A computa-
tional analysis performed using Mathematica reveals that any solution (n,m, q, ℓ, a, b) to
equation (1) satisfies n− q ≤ 334.

4. 3. Bounding n: Step 3

In this final step, we leverage the bounds on n − m and n − q obtained previously to
derive an upper bound on the variable n itself.

To proceed, we define the quantity

Γ3 = ℓ log b− (n+ 2) logα+ log

(
a

(b− 1)Cα (1 + αm−n + αq−n)

)
,

and observe that inequality (9) can be reformulated as:∣∣eΓ3 − 1
∣∣ < 2.1

αn
. (15)

Since eΓ3 − 1 = Λ3 ̸= 0, we confirm that Γ3 ̸= 0. Then, applying Lemma 2 to
inequality (15), we deduce the following bound:

0 < |Γ3| <
4.2

αn
.

Dividing the inequality above by log α and substituting the expression of Γ3 yields:

0 <

∣∣∣∣∣∣ℓ
(
log b

logα

)
− n+

 log
(

a
(b−1)Cα(1+αm−n+αq−n)

)
logα

− 2

∣∣∣∣∣∣ < 11α−n. (16)

We apply Lemma 7 once again with the following choice of parameters:

u := ℓ, v := n, w := n, γ :=
log b

logα
,

A := 12, B := α, µ :=
log

(
a

(b−1)Cα(1+αm−n+αq−n)

)
logα

− 2.
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Table 1. Solutions of equation 1 with ℓ ≥ 3

Base Sum Representation (n,m, q) Base Representation

2 15 (6, 6, 4), (7, 4, 4), (7, 5, 3), (8, 0, 0), (8, 1, 0), (8, 1,

1), (8, 2, 0), (8, 2, 1), (8, 2, 2)

[1111]2

2 31 (8, 7, 7), (9, 6, 6), (9, 7, 4), (10, 3, 0), (10, 3, 1), (10,
3, 2)

[11111]2

2 63 (11, 8, 7), (11, 9, 4), (12, 3, 0), (12, 3, 1), (12, 3, 2) [111111]2
2 255 (15, 12, 6) [11111111]2
3 40 (9, 9, 3), (10, 6, 6), (10, 7, 4) [1111]3
3 80 (12, 9, 0), (12, 9, 1), (12, 9, 2) [2222]3
3 121 (12, 12, 0), (12, 12, 1), (12, 12, 2) [11111]3
3 728 (18, 14, 5) [222222]3
3 3280 (21, 20, 14), (22, 17, 14) [11111111]3
3 59048 (30, 18, 10) [2222222222]3
4 85 (11, 11, 4), (12, 9, 6) [1111]4
4 170 (13, 11, 11), (14, 10, 8) [2222]4
4 255 (15, 12, 6) [3333]4
4 341 (16, 12, 5) [11111]4
5 468 (16, 15, 3), (17, 12, 3) [3333]5
5 624 (18, 10, 0), (18, 10, 1), (18, 10, 2) [4444]5
6 259 (14, 14, 0), (14, 14, 1), (14, 14, 2) [1111]6
6 1295 (20, 8, 5) [5555]6
6 1555 (19, 17, 16), (19, 18, 13), (20, 15, 13) [11111]6
6 3110 (22, 16, 13) [22222]6
6 7775 (24, 21, 6) [55555]6
7 2801 (22, 10, 10) [11111]7
8 28086 (28, 19, 8) [666666]8
9 3280 (21, 20, 14), (22, 17, 14) [4444]9
9 59048 (30, 18, 10) [88888]9
12 1885 (21, 6, 6), (21, 7, 4) [1111]12
12 9425 (25, 18, 15) [5555]12
12 18850 (27, 16, 8) [aaaa]12
13 309410 (33, 32, 4), (34, 29, 4) [aaaaa]13
14 5910 (24, 8, 0), (24, 8, 1), (24, 8, 2) [2222]14
14 11820 (24, 24, 10) [4444]14
16 8738 (25, 13, 7) [2222]16
18 6175 (24, 16, 3) [1111]18
23 12720 (26, 10, 10) [1111]23
23 165360 (32, 29, 5) [cccc]23
23 585122 (36, 24, 16) [22222]23
27 183960 (33, 11, 4) [9999]27
27 367920 (33, 33, 13) [iiiii]27
28 591890 (36, 26, 16) [qqqqq]28

By fixing M := Mb = 1.75 × 1045 log6 b, we execute the application of Lemma 7 to
inequality (16) over all combinations of b ∈ {2, . . . , 30}, a ∈ {1, . . . , b − 1}, n − m ∈
{0, . . . , 326}, and n − q ∈ {0, . . . , 334}. A search performed with Mathematica confirms
that for all such solutions (n,m, q, ℓ, a, b), the bound n ≤ 322 holds.
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5. Proof of Theorem 1

Based on the reduction steps above, we conclude that any solution (n,m, q, ℓ, a, b) of
the Diophantine equation (1), under the constraints 0 ≤ q ≤ m ≤ n, 2 ≤ b ≤ 30,
1 ≤ a ≤ b− 1, and ℓ ≥ 2, must satisfy 1 ≤ n ≤ 322.

Within this finite range, all potential solutions are computed using Mathematica. We
document and analyze the complete list of solutions to equation (1) for which ℓ ≥ 4.
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