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Abstract. We consider a problem of controlling a heating device intended for heating a
coolant supplying heat to a closed system is considered. Feedback is used to control the pro-
cess, in which information about the process state is continuously or discretely received from
individual points of the device, where temperature sensors are installed. The mathematical
model of the controlled process in both cases is described by a point-loaded first-order hy-
perbolic equation. Formulas for the gradient of the objective functional of the problem are
obtained, allowing the use of first-order numerical optimization methods for solving problems.
Numerical experiments are carried out using the example of solving several test problems.
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1. Introduction

The article proposes an approach to constructing a feedback control system for an object
with distributed parameters. The object under consideration is a heat supply system fed
by liquid heated in a heat exchanger, which is a steam jacket [23]. Temperature sensors
are installed at some points of the heat exchanger, based on the readings of which heat is
supplied to the heat exchanger. The heat exchange process in the heat exchanger is described
by a first-order hyperbolic transfer equation [23]. The boundary conditions include a delay
argument due to the time it takes for the heated liquid to pass through the heat supply
system.

It should be noted that interest in recent years has grown in problems of optimal control
of objects with distributed parameters described by various types of partial differential
equations with various types of initial boundary conditions [5], [6], [14], [15], [18], [20], [22],
[23], [25]. Of particular complexity are problems of control (regulation) with feedback. While
these problems have been studied quite well for objects with lumped parameters [7], [24],
problems of control of objects with distributed parameters, on the contrary, have not been
studied sufficiently [4]–[8], [10], [11], [15], [20], [24], [25]. Firstly, this is due to the complexity
of the practical implementation of control systems for objects described by partial differential
equations distributed in space and time [19]. This complexity is due to the impossibility
of continuous or even discrete-time operational receipt of information about the state of
the entire object (at all its points). Secondly, there are mathematical and computational
problems, since the solution of initial boundary problems for partial differential equations
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requires, to a certain extent, a lot of time, which often makes it impossible to build control
systems for objects with distributed parameters in real time.

The approach to the synthesis of optimal control of the heat supply process proposed in
the article is based on the use of information about the state of the process at a finite number
of measurement points. In this case, the problem involves optimizing both the position of the
measurement points themselves and their number. Formulas are obtained for the gradient of
the target functional for the optimized parameters of feedback control, which are used in the
numerical solution of the problem using iterative first-order optimization methods. These
formulas allow us to derive the necessary optimality conditions similar to the Pontryagin
maximum principle.

2. Problem Statement

The process of heating the coolant in the furnace of the heated device (heat exchanger) of
the heating system can be described by the transfer equation (see [23], [26]):

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= α [ϑ(t)− u(x, t)] , (x, t) ∈ Ω = (0, l)× (0, T ], (1)

where u = u(x, t) is the temperature of the heat-carrying agent at the point x of the heat
exchanger at the point of time t; l -the length of the heating tube, in which the heat-carrying
agent is heated; a the velocity of the heat-carrying agent in the heat supply system, the value
of which is constant for all points of the heat supply system, i.e. the motion is assumed to be
steady (stationary); α the given value of the heat transfer coefficient between the furnace and
the heat-carrying agent in the heating apparatus; ϑ(t) the temperature inside the furnace,
by means of which the heating process is controlled, subject to the technological limit:

ϑ ≤ ϑ(t) ≤ ϑ̄. (2)

Let L be the linear length of the whole heat supply system, and L far exceeds l, i.e.
L >> l. Then the heat-carrying agent heated in the furnace needs the time T d = L/a in
order to return to the beginning of the furnace, i.e.

u(0, t) = (1− γ)u(l, t− T d), t > 0 , (3)

where γ is the constant value that determines the heat lost during the motion in the heat-
ing system, which, in essence, depends considerably on the temperature of the external
environment. On the basis of practical considerations, we have the obvious condition:

0 ≤ γ ≤ 1. (4)

Denote by Γ the set of all possible values of γ, determining the amount of lost heat,
satisfying (3) and (4). It is assumed that a density function ρΓ (γ) is given on this set
satisfying the condition:

ρΓ (γ) ≥ 0 , γ ∈ Γ ,

∫
Γ

ρΓ (y)dy = 1,

ρΓ (γ) ∈ [0, 1], γ ∈ Γ.

Let the inital history be given by:

u(x, t) = const, x ∈ [0, l], −T d < t < 0. (5)

The problem of controlling the of heating of the heat-carrying agent consists in maintaining
the furnace temperature at such a level that provides a certain temperature u(l, t) = V =
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const, t ∈ (0, T ], of the heat-carrying agent at the exit of the furnace under all possible
admissible values of the heat lost by the heat-carrying agent when it moves in the heat
supply system, determined by the values γ ∈ Γ .

Let sensors be installed at M arbitrary points ξi ∈ [0, l], i = 1, 2, ...,M , of the heating
apparatus, at which temperature measurements are taken continuously:

ui(t) = u(ξi, t), t ∈ [0, T ],

or at discrete points of time

uij = u(ξi, tj), tj ∈ [0, T ], j = 1, 2, ...,m.

To construct a heating control system with a continuous feedback, consider the following
variant of the temperature control system:

ϑ(t) =
1

l

M∑
i=1

λik̃i[u(ξi, t)− zi] , (6)

where k̃i is the amplification coefficient; zi the effective temperature at the point ξi, at which
we need to control the amount of deviation from this value; λi = const the weighting coeffi-
cient, determining the importance of taking a measurement at the point ξi, i = 1, 2, ...,M ,

λ ∈ Λ =

{
λ ∈ RM : 0 ≤ λi ≤ 1, i = 1, 2, ...,M,

M∑
i=1

λi = 1

}
.

We introduce complex parameters:

ki =
λik̃i
l
, i = 1, 2 , ...,M.

In this case the formula for the temperature in the furnace (6) takes the form:

ϑ(t) = ϑ(t; y) =

M∑
i=1

ki[u(ξi, t)− zi] . (7)

Here y = (ξ, k, z)∗ ∈ R3M is the vector of parameters of the feedback that determines
the current control value (furnace temperature) depending on the measured temperature
values at the heat exchanger measurement points; ”*” is the transposition sign.

Substituting (6) into (1), we obtain:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= α

[
M∑
i=1

ki[u(ξi, t)− zi]− u(x, t)

]
,

(x, t) ∈ Ω = (0, l)× (0, T ] . (8)

The minimized criterion of the control quality is given by the following form:

J(y; γ) =

∫
Γ

I(y; γ)ρΓ (γ) dγ, (9)

I(y; γ) =

T∫
0

[u(l, t; y, γ)− V ]
2
dt+ σ ∥y − ŷ∥2R3M , (10)

where u(x, t; y, γ) is the solution of initial boundary-value problem (1), (3), (5) under
specified feasible values of feedback parameters y and heat loss parameters γ ∈ Γ ;
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ŷ = (k̂, ẑ, ξ̂) ∈ R3M and σ, a small positive quantity are the regularization parameters.
Thus, initial feedback control problem the reduces to a parametric optimal control problem.
The peculiarity of the problem is that it follows a point wise loaded differential equation
(8) (due to the presence of the spatial variable of a value of the unknown function u(x, t) at
given points ξi, i = 1, 2, ...,M in the equation, under boundary conditions with the lagging
argument (3) [1]–[3], [5], [9], [12], [13], [16], [21].

Taking into account transformations (6), the optimizable feedback control parameters y
can be constrained based on technical and process considerations:

0 ≤ ξi ≤ l, ki ≤ ki ≤ k̄i, zi ≤ zi ≤ z̄i, i = 1, 2, ..., M. (11)

Here, ki, k̄i, zi, z̄i, i = 1, 2, ..., M, are given values. The values ki, k̄i, i = 1, 2, ..., M ,
are derived from formula (7) taking into account constraints (2) the a priori information
on possible and permissible values of steam and coolant temperature. The values zi, z̄i, i =
1, 2, ..., M , are mainly determined by the desired value of coolant temperature V at the
heater outlet.

3. Derivation of the Formulas for the Gradient of the
Functional

For numerical solution to the obtained parametric optimal control problem for a loaded
system with distributed parameters, we propose to use first-order methods, for example, the
gradient projection method (see [27] ). To construct a minimizing sequence yν , ν = 0, 1, ...,
an iterative process is constructed:

yν+1 = P(11)[y
ν − µνgrad J(y

ν)] , ν = 0, 1, ... . (12)

Here P(11)(y) is the projection operator of a 3M - dimensional point y = (ξ, k, z)∗ on
the set defined by the constraints (11); µν > 0 the step in the direction of the projected
anti-gradient. The initial approximation y0 can be arbitrary, satisfying, in particular, the
conditions (11). Considering the simplicity of the structure of the admissible set of optimiz-
able parameters defined by the constraints (11), the projection operator has a constructive
character and is easy to implement.

The criterion for stopping the iterative process (14) can be the fulfillment of one of the
following inequalities:

J(yν)− J(yν+1) ≤ ϵ1,
∥∥yν − yν+1

∥∥ ≤ ϵ2, (13)

where ϵ1 and ϵ2 is a given positive numbers.
To build the procedure (12), we obtain formulas for the components of the gradient of

the functional (9), (10) with respect to the optimizable parameters:

grad J(y) =

(
∂J(ξ, k, z)

∂ξ
,
∂J(ξ, k, z)

∂k
,
∂J(ξ, k, z)

∂z

)∗

.

To this end, we use the well-known technology of obtaining formulas for an increment
of the functional obtained at the expense of the increment of the optimizable arguments
of the functional (see [27] ). In this case, the linear part of the increment of the functional
with respect to each of the arguments will be the desired component of the gradient of the
functional with respect to the corresponding argument.

Before to obtaining formulas for the gradient components of the functional, we note
the following. Taking into account that the parameter γ ∈ Γ , determining the amount of
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lost heat, does not depend on the process of heating the heat-carrying agent in the heat
exchanger, from (9),(10) it follows that:

grad J(y) = grad

∫
Γ

I(y; γ)ρΓ (γ)dγ =

∫
Γ

grad I(y; γ)ρΓ (y)dγdy. (14)

Therefore, we obtain the formula grad I(y; γ) for any one arbitrarily given parameter
γ ∈ Γ .

Let u(x, t; y, γ) be the solution to the loaded initial- and boundary-value problem (8),
(3)–(5) for an arbitrary chosen vector of the optimizable parameters y = (ξ, k, z)∗ and for a
given value of the parameter γ ∈ Γ . For brevity, where this does not cause ambiguity, the
parameters y, γ will be omitted from the solution u(x, t; y, γ).

Let the parameters y = (ξ, k, z)∗ have obtained some admissible increments ∆y =
(∆ξ,∆k,∆z)∗ , and ũ(x, t) = ũ(x, t; ỹ) = u(x, t) + ∆u(x, t) be the solution to the prob-
lem (8), (3)–(5), that corresponds to the incremented vector of arguments ỹ = y +∆y.

Substituting the function ũ(x, t) into the conditions (8), (3)–(5), we obtain the following
initial- and boundary-value problem accurate within the terms of the first order of smallness
with respect to the increment ∆u(x, t) of the phase variable:

∆ut(x, t) + a∆ux(x, t) = α

M∑
i=1

[ki∆u(ξi, t) + kiux(ξi, t)∆ξi+

+ (u(ξi, t)− zi)∆ki − ki∆zi]− α∆u(x, t) , (x, t) ∈ Ω , (15)

∆u(x, 0) = 0, x ∈ [0, l], (16)

∆u(0, t) =

{
0, t ≤ T d,
(1− γ)∆u(l, t− T d), t ≥ T d.

(17)

In obtaining formula (15) we used the relation:

u(ξi +∆ξi, t) = u(ξi, t) + ux(ξi, t)∆ξi + o(|∆ξi|).

For the increment of the functional (10), it is not difficult to obtain directly the repre-
sentation:

∆I(y; γ) = I(ỹ; γ)− I(y; γ) = I(y +∆y; γ)− I(y; γ) =

= 2
T∫
0

[u(l, t ; y, γ)− V ]∆u(l, t)dt+ 2σ
3M∑
i=1

(yi − y0i )∆yi ,

3M∑
i=1

(yi − y0i )∆yi =

3M∑
i=1

[
(ξi − ξ0i )∆ξi + (ki − k0i )∆ki + (zi − z0i )∆zi

]
.

Let ψ(x, t) = ψ(x, t; y, γ) be yet an arbitrary function continuous everywhere on Ω, ex-
cept at the points x = ξi, i = 1, 2, ...,M , differentiable with respect to x for x ∈ (ξi, ξi+1), i =
0, 1, ...,M, ξ0 = 0, ξM+1 = l, differentiable with respect to t for t ∈ (0, T ). The presence
of the arguments y and γ in the function ψ(x, t; y, γ) indicate that it can vary when the
feedback parameter vector y and the parameter γ change. Where it is possible, we will omit
the parameters y and γ in the function ψ(x, t; y, γ). We multiply equation (15) by ψ(x, t)
and integrate it over the rectangle Ω. Taking into account the assumed assumptions and
conditions (16), (17), we have:

T∫
0

l∫
0

ψ(x, t)∆ut(x, t)dxdt+ a

M∑
i=0

ξi+1∫
ξi

T∫
0

ψ(x, t)∆ux(x, t)dtdx−
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−α
T∫

0

l∫
0

ψ(x, t)

M∑
i=1

[ki∆u(ξi, t) + kiux(ξi, t)∆ξi + (u(ξi, t)− zi)∆ki − ki∆zi] dx dt+

+α

T∫
0

l∫
0

ψ(x, t)∆u(x, t)dx dt = 0 . (18)

Using integration by parts for the first and second terms of (18) separately, and taking
(16), (17) into account, we obtain:

T∫
0

l∫
0

ψ(x, t)∆ut(x, t)dxdt =

=

l∫
0

ψ(x, T )∆u(x, T )dx−
T∫

0

l∫
0

ψt(x, t)∆u(x, t)dxdt, (19)

a

M∑
i=0

ξi+1∫
ξi

T∫
0

ψ(x, t)∆ux(x, t)dtdx = a

T∫
0

[ψ(l, t)∆u(l, t)− ψ(0, t)∆u(0, t)] dt+

+a

M∑
i=1

T∫
0

[
ψ(ξ−i , t)− ψ(ξ+i , t)

]
∆u(ξi, t) dt− a

T∫
0

l∫
0

ψx(x, t)∆u(x, t)dxdt =

= a

T∫
0

ψ(l, t)∆u(l, t)dt− a(1− γ)

T∫
Td

ψ(0, t)∆u(l, t− T d)dt+

+a

M∑
i=1

T∫
0

[
ψ(ξ−i , t)− ψ(ξ+i , t)

]
∆u(ξi, t) dt− a

T∫
0

l∫
0

ψx(x, t)∆u(x, t)dxdt =

= a

T∫
0

ψ(l, t)∆u(l, t)dt− a(1− γ)

T−Td∫
0

ψ(0, t+ T d)∆u(l, t)dt+

+a

M∑
i=1

T∫
0

[
ψ(ξ−i , t)− ψ(ξ+i , t)

]
∆u(ξi, t) dt− a

T∫
0

l∫
0

ψx(x, t)∆u(x, t)dxdt. (20)

Here we have used the notation

ψ(ξ−i , t) = ψ(ξi − 0, t), ψ(ξ+i , t) = ψ(ξi + 0, t).

Taking (18)–(20) into account, we obtain for the increment of the functional:

∆I =

T∫
T−Td

[aψ(l, t) + 2(u(l, t)− V )]∆u(l, t)dt+

l∫
0

ψ(x, T )∆u(x, T )dx+

+

T−Td∫
0

[
aψ(l, t) + a(1− γ)ψ(0, t+ T d) + 2(u(l, t)− V )

]
∆u(l, t)dt+
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+

T∫
0

l∫
0

[−ψt(x, t)− aψx(x, t) + αψ(x, t)]∆u(x, t)dxdt+

+a

M∑
i=1

T∫
0

ψ(ξ−i , t)− ψ(ξ+i , t)−
α

a
ki

l∫
0

ψ(x, t)dx

 ∆u(ξi, t) dt−

−α
T∫

0

l∫
0

ψ(x, t)

M∑
i=1

[kiux(ξi, t)∆ξi + (u(ξi, t)− zi)∆ki − ki∆zi] dx dt+

+2σ

M∑
i=1

[
(ξi − ξ0i )∆ξi + (ki − k0i )∆ki + (zi − z0i )∆zi

]
.

Since the function ψ(x, t) is arbitrary, we require that it be almost everywhere a solution
of the following adjoint initial- and boundary-value problem:

ψt(x, t) + aψx(x, t) = αψ(x, t), (x, t) ∈ Ω, (21)

ψ(x, T ) = 0, x ∈ [0, l], (22)

ψ(l, t) = −2

a
(u(l, t)− V ), t ∈ (T − T d, T ], (23)

ψ(l, t) = −α
a
(1− γ)ψ(0, t+ T d)− 2

a
(u(l, t)− V ), t ∈ (0, T − T d], (24)

and at the points ξi, i = 1, 2, ...,M for t ∈ [0, T ], it satisfy the condition:

ψ(ξ−i , t) = ψ(ξ+i , t) +
α

a
ki

l∫
0

ψ(x, t)dx, i = 1, 2, ...M . (25)

Taking into account that the components of the gradient of the functional are deter-
mined by the linear part of the increment of the functional under the increments of the
corresponding arguments, we obtain:

gradξiI = −αki

T∫
0

 l∫
0

ψ(x, t)dx

ux(ξi, t)dt+ 2σ(ξi − ξ0i ), i = 1, 2, ....,M,

gradki
I = −α

T∫
0

(u(ξi, t)− zi)

 l∫
0

ψ(x, t)dx

dt+ 2σ(ki − k0i ), i = 1, 2, ....,M,

gradziI = αki

l∫
0

ψ(x, t)dx+ 2σ(zi − z0i ), i = 1, 2, ....,M.

Thus, we can consider the following theorem to be proved.
Theorem. For the optimality of the vector of parameters y∗ ∈ R3M in the problem (8),

(3)-(5), (9)-(10), it is necessary and sufficient that

(gradJ(y∗), y∗ − y) ≤ 0
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for all admissible control parameters y ∈ R3M satisfying conditions (11). The components
of the gradient vector gradJ(y) are defined by the formulas:

gradξiJ(y) =

∫
Γ

−αki

T∫
0

 l∫
0

ψ(x, t; y, γ)dx

ux(ξi, t; y, γ)dt + 2σ(ξi − ξ0i )
}
ρΓ (γ)dγ,

gradkiJ(y) =

∫
Γ

−α
T∫

0

(u(ξi, t; y, γ)− zi)

 l∫
0

ψ(x, t; y, γ)dx

dt+ 2σ(ki − k0i )
}
ρΓ (γ)dγ,

gradziJ(y) =

∫
Γ

αki
l∫

0

ψ(x, t; y, γ)dx+ 2σ(zi − z0i )

 ρΓ (γ)dγ.

where i = 1, 2, ....,M , u(x, t; y, γ); ψ(x, t; y, γ) are the solutions to the direct and adjoint
boundary-value problems (8), (3)–(5) and (21)–(25), respectively.

In numerical solution of the initial problem of optimizing the parameters to be syn-
thesized, each iteration of procedure (12) involves solving direct (8), (3)-(5) and adjoint
(21)–(25) boundary-value problems with the specifics described above. Numerical solution
of loaded boundary-value problems can be obtained using methods of meshes or lines. Their
application to solution of similar problems was studied, for example, in [1], [3]. Lagging
under boundary conditions can be taken into account using the “step method” [17].

4. Results of the Numerical Experiments

In this section, we present the results of the solution of the following model problem. The
process is described by the boundary-value problem (1)–(5). It is required to design an
optimal control (regulation) system for the coolant heating process, first, with two feedback
points, i.e., M = 2. Thus, it is required to determine ξ = (ξ1, ξ2), that is, locations of two
temperature sensors, as well as feedback parameters k, z ∈ R2. Hence, the total number of
parameters to be synthesized is six.

The problem is considered solved at the following values of parameters comprising its
statement: l = 1 ; a = 1; α = 0, 1; T d = 0.2, T = 5, V = 70, Γ = [0; 0.2], ϑ = 55, ϑ̄ = 75,
k̄1 = k̄2 = 8, k1 = k2 = 1, z̄1 = z̄2 = 75, z1 = z2 = 57. In calculations, the density function
ρΓ (γ) has been taken uniformly distributed on [0; 0.2], while approximation of the integral
over Γ was performed using the of method rectangle with the step 0.05. It should be noted
that values k̄1 and k̄2 chosen using the results of trial calculations performed, which required
the process constraint (2) to be true for given ϑ and ϑ̄.

The numerical experiments have been carried for different initial values of parameters
(y0)j = (k01, k

0
2, z

0
1 , z

0
2 , ξ

0
1 , ξ

0
2)

j , j = 1, 2, ..., 5, used in iterative optimization procedure (12).

Table 1. Initial values of the parameters (y0)j , j = 1, 2, ..., 5, to be optimized and the corre-

sponding values of the functional

j Values of the parameters to be optimized Value of the
functional

(k01)
j (k02)

j (z01)
j (z02)

j (ξ01)
j (ξ02)

j J(y0)j

1 4 6 61 63 0,1 0,8 363.210004

2 3 5 65 60 0,2 0,9 357.150011

3 1 8 62 63 0,4 0,8 257.310003

4 5 2 63 66 0,5 0,7 165.150016

5 6 4 66 62 0,2 0,7 205.190007
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Table 1 gives these values, as well as the corresponding values of the functional at these
points.

Table 2 gives the values of parameters (y(∗))j = (k
(∗)

1 , k
(∗)

2 , z
(∗)

1 , z
(∗)

2 , ξ
(∗)

1 , ξ
(∗)

2 )j and the
functional J(y∗)j obtained using the gradient projection method, (12), (13) at δ1 = 0.005
and δ2 = 0.001 starting from the initial points (y0)j , j = 1, 2, ..., 5, specified in Table 1.

Table 2. Values of parameters and the functional obtained at the sixth iterations of process

(12) for different initial values (y0)j , j = 1, 2, ..., 5

j Values of the parameters to be optimized Value of the

functional

(k∗1)
j (k∗2)

j (z∗1 )
j (z∗2 )

j (ξ∗1)
j (ξ∗2)

j J(y∗)j

1 5.9956 3.9952 66.9945 68.9949 0.2994 0.5994 0.3422

2 5.9977 3.9983 66.9978 68.9954 0.3000 0.6000 0.3259

3 5.9962 3.9988 66.9951 68.9948 0.2971 0.5971 0.3538

4 5.9978 3.9971 66.9991 68.9975 0.3000 0.6000 0.3145

5 5.9991 3.9961 66.9964 68.9973 0.3000 0.6000 0.3062

Numerical experiments have been performed, in which exact values of the process states
observed at sensor points u(ξ1, t) and u(ξ2, t) have been perturbed with random noise as
follows:

u(ξi, t) = u(ξi, t) (1 + χ(2θi − 1)) , i = 1, 2 ,

where θi is a random value uniformly distributed on the interval [0, 1], and χ is the noise
level.

Table 3 gives the obtained values of the functional and relative deviations between the
obtained and the desired temperature at the unit outlet for noise levels equal to 0% (no
noise), 1%, 3%, and 5%, which correspond to values χ = 0 (no noise), 0.01, 0.03, and 0.05.

As can be seen from Table 3, feedback control of the coolant heating process in the
furnace of the heated apparatus is quite resistant to measurement errors.

Table 3. Values of the functional and relative deviations between the obtained and the desired

temperature at the unit outlet for different noise levels in measurement

Noise level

χ

Relative deviation

max
t∈[0,5]

|u(l, t)− V |
/

|V |
Value

of the functional
J∗(y)

0.00 0.021941 0.3023

0.01 0.033052 0.3543

0.03 0.038311 0.3762

0.05 0.064574 0.3916

5. Conslusion

Automatic feedback control systems for technical objects and technological processes with
distributed parameters have become widespread due to the significantly increased capabili-
ties of measuring and computing equipment. The paper studies the problem of controlling a
heating device for heating a coolant that supplies heat to a closed heat supply system. The
specificity of the problem under study, described by a first-order hyperbolic equation, lies
in the presence of a time-delayed argument in its boundary conditions. The mathematical
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model of the controlled process is reduced to a point-loaded hyperbolic equation, and the
problem under consideration is reduced to a parametric optimal control problem. To use
first-order optimization methods for the numerical solution of the problem of optimizing the
location of sensors and parameters of feedback control actions, formulas for the gradient of
the target functional are obtained.

The statement of the problem and the approach used in the paper to obtaining calculation
formulas for its numerical solution can be generalized to cases of feedback control of many
other processes described by other types of partial differential equations.
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