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Abstract. A set is an out-Chebyshev set if any point lying at a positive distance from
this set has a unique best approximant in this set. We extend the classical Berdyshev–
Brøndsted–Brown theorem on convexity of Chebyshev sets in spaces of dimension ≤ 4 to
the case of out-Chebyshev sets.
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1. Introduction

It is well known that many classical aggregates of approximation (exponential sums, gen-
eralized rational fractions, splines of degree m of defect k with n free knots, products
{vw | v ∈ V , w ∈ W}) are in general nonclosed sets (see, for example, [9, Chap. VI],
[4, § 11.4, § 7.12]). This suggests that we study approximative and geometrical proper-
ties of sets which are not necessarily closed. Correspondingly, this leads to the concept
of out-Chebyshev sets—unlike the classical definition of a Chebyshev set, here a best
approximant from a set M is required to exist and be unique only for points from the
metrical exterior out(M) of M , i.e., for points which lie at a positive distance from M .
For out-Chebyshev sets in finite-dimensional spaces, we consider the problem of charac-
terization of spaces in which any such a set is preconvex, i.e., its closure is convex. We
also obtain balayage type results for this problem.

Below, X = (X, ∥ · ∥) is a finite-dimensional real asymmetric normed space (in par-
ticular, X is a finite-dimensional normed linear space [11]);
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B(x, r) = {y ∈ X | ∥y − x∥ ≤ r} is the closed ball with center x and radius r;
S(x, r) = {y ∈ X | ∥y − x∥ = r} is the sphere;
B := B(0, 1) is the unit ball, S = S(0, 1) is the unit sphere.
For ∅ ̸= M ⊂ X, the distance from a point x ∈ X to a set M ⊂ X is defined by

ρ(x,M) := infy∈M ∥y − x∥. The set of nearest points (best approximants) for a point
x ∈ X in a set M is defined by

PMx :=
{
y ∈ M | ρ(x,M) = ∥y − x∥

}
.

The metrical exterior out(M) of a set M is the set of all points lying at a positive
distance from M , i.e.,

out(M) := {x ∈ X | ρ(x,M) > 0}.

Definition 1. A set ∅ ̸= M ⊂ X is a Chebyshev set with respect to K if PMx is
a singleton for any x ∈ K; M is a Chebyshev set if K = X; if K = out(M), then M is an
out-Chebyshev set. (A Chebyshev set is closed qua an existence set; an out-Chebyshev
set is not necessarily closed.)

In the main Theorem, we extend the classical Berdyshev–Brøndsted–Brown theorem
(equivalence b)⇔ c) in Theorem) on convexity of Chebyshev sets in spaces of dimension
≤ 4 to the case of not necessarily closed Chebyshev sets (out-Chebyshev sets).

The study of geometry of Chebyshev sets in finite-dimensional normed linear spaces
was pioneered by L.N.H. Bunt, H. Mann, and T. Motzkin (see, for example, [7, § 1.1]).
In particular, it was shown that in the finite-dimensional Euclidean space Rn the class
of Chebyshev sets coincides with the c;ass of closed convex sets. Brøndsted [10] and
Berdyshev [8] independently characterized the three-dimensional (asymmetric) normed
spaces in which any Chebyshev set is convex. (The answer in the two-dimensional setting
was known much earlier.) A. L. Brown characterized the four-dimensional normed spaces,
where each Chebyshev set is convex; later Alimov [1] extended Brown’s result to the
asymmetric case. For an account of these results and relevant references, see [7], [1], [12]
and [6].

In many problems of geometric approximation theory, it suffices to consider not the
entire unit sphere, but rather the part of the unit sphere consisting of acting points (for
a given set M)— these being the (acting) points of the unit sphere such that M can
be touched by an “analog” of such a point on some homothetic copy of the unit ball
whose interior has no common points with M . In this regard, in Theorem we also obtain
so-called balayage results for the problem of convexity of out-Chebyshev sets. In bal-
ayage theorems, which date back to the Fermat’s Rule from calculus and the Chebyshev
equioscillation theorem from approximation theory, one gets rid of unnecessary points in
the domain of a given functional without changing its optimal value. For more results on
this topic, see [1], [2], and [3].

Definition 2. Let M ⊂ X be a nonempty set. A point s ∈ S is an M -acting point (see
[1]) of the unit sphere S if

s ∈ (PMx− x)/ρ for some x /∈ M, where ρ = ρ(x, PMx)
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here, “M” refers to the set under consideration M .

Definition 3. A point s of the unit sphere S is a smooth point of S (or of the unit ball B)
if there is only one support hyperplane to B at s (equivalently, if the norm is Gâteaux
differentiable at s). A point s is an exposed point of the ball B if there is a support
hyperplane H to the ball B at the point s such that H ∩B = {s}.

Definition 4. The projection boundary pbM of a set M in an asymmetric normed space
(X, ∥ · ∥) is defined by (see [5])

pb(M) := {y ∈ M | y ∈ PMx for some point x ∈ out(M)}.

A set M ̸= ∅ is projection closed if it contains its projection boundary (in other words,
the projection boundary of the set consists of its touchable points [5]).

Example. Let Rn,m, m ≥ 1, be the set of classical rational functions in Lp[a, b], 1 ≤
p < ∞ (see [4, Chap. 11]). The set

M := Rn,m \ Rn−1,m−1

gives a classical example of a projection closed set which is not closed. This property
follows from one well-known result of J. Batter (see, for example, [4, § 11.3]), who proved
that, for the rational Lp-approximation, a best approximant has always maximal degree
of either numerator or denominator, i.e., if u∗ is a nearest point of Lp-approximation
from Rn,m, 1 < p < ∞, for an f /∈ Rn,m, n ≥ 1, then u∗ /∈ Rn−1,m−1. Note that
according to Ch. Dunham this nondegeneracy property does not hold in L1 (see, for
example, [4, § 11.3]). In the space C[a, b], the Chebyshev equioscillation theorem implies
that any element from (the Chebyshev sun) Rn,m is a touchable point of Rn,m.

We also note that in C[a, b], a nonempty set M ⊂ Rn,m is projection closed if and
only if it is closed.

The set Π = {x ∈ ℓ2 | |x(n)| ≤ 1/2n−1} (the Hilbert parallelotope) is also an example
of a convex compact set for which the projection boundary is different from the boundary
of this set.

Definition 5. A set M is a uniqueness set if any point x has at most one nearest point
in M (0 lies in the boundary of M , but 0 does not lie in the projection boundary of M).

For the following result, see [5].

Theorem A. Let X be a finite-dimensional space, ∅ ̸= M ⊂ X be a projection closed
uniqueness set. Then

pbM = bdM,

i.e., the projection boundary of M coincides with the boundary of its closure M .

Corollary. If M is an out-Chebyshev set in a finite-dimensional space, then M is pro-
jection closed.

Definition 6. A set is preconvex if its closure is convex.
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The main result, which extends the classical Berdyshev–Brøndsted–Brown theorem
on convexity of Chebyshev sets in spaces of dimension ≤ 4 to the case of out-Chebyshev
sets, is as follows.

Theorem. Let X be a normed (or asymmetric normed) linear space, dimX ≤ 4. Then
the following assertions are equivalent:

a) each out-Chebyshev set M in X is preconvex;
b) each Chebyshev set M in X is convex;
c) each exposed point of the ball B is a smooth point of B;
d) for each Chebyshev set M in X, each exposed M -acting point of the ball B is

a smooth point of the ball B;
e) for each out-Chebyshev set M in X, each exposed M -acting point of the ball B is

a smooth point of the ball B;
f) for each out-Chebyshev set M in X, each exposed M -acting point of the ball B is

a smooth point of the ball B.

Remark 1. In relation to Theorem, we recall that if M is an out-Chebyshev set in
a finite-dimensional space, then M is projection closed (see Corollary and, further, the
projection boundary of the set M coincides with the boundary of its closure M (see
Theorem A.).

Remark 2. Assertion a) of Theorem is also true for arbitrary finite-dimensional spaces
satisfying the well-known A. L. Brown’s condition for the system of faces of the unit ball
(this condition holds automatically for the spaces of dimension ≤ 4). For further details,
see [7, § 1.1] and [1, § 3].

Remark 3. For the two-dimensional spaces, assertion c) of Theorem assumes the form:
“any point of the unit sphere B is a smooth point”; and assertion d) takes the form: “for
each Chebyshev set in X any M -acting point of the ball B is a smooth point of B”, etc.

For a proof of Theorem, we need the following lemma.

Lemma. If M is an out-Chebyshev set in a finite-dimensional asymmetric space, then
M is a Chebyshev set.

Proof. Assume on the contrary that some point x ∈ outM (= outM) has two nearest
points y and y′ in the set M ; PMx = {y}. Given a point x′ ∈ (x, y′), we set r′ :=
ρ(x′,M) = ∥x′ − y′∥. Since x′ ∈ outM , we have r′ > 0. Let PMx′ = {v′}. If a point x′

is sufficiently close to y′, then y /∈ B(x′, r′). For α ∈ [0, 1], we set x′
α := αx+ (1 − α)x′.

We have ρ(x,M) = ∥x− y′∥, and hence ∥x′
α − y′∥ = ∥x′

α − v′∥, whence, making α → 1,
we find that

∥x− y′∥ = ∥x− v′∥ = ∥x− y∥.

Hence y, v′ ∈ PMx. This, however, contradicts the fact that M is an out-Chebyshev set.
Lemma is proved. ◀

Let us now prove Theorem. Equivalence b)⇔ c) is well known. In the three-
dimensional case, this result is due to V. I. Berdyshev [8] and A. Brøndsted [10]; in
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the four-dimensional case, the corresponding characterization is due to A. L. Brown in
the symmetric case and A.R. Alimov in the asymmetric case; see [7].

Equivalence b)⇔ d) was proved by the author of the present note in [1].
Implication a)⇒ b) is clear, because any Chebyshev set is an out-Chebyshev set.
Let us verify implication c)⇒ a). Let M be an out-Chebyshev set in a space X, where

each exposed point of the unit ball is a smooth point of this ball. By Lemma, M is
a Chebyshev set. By implication c)⇒ b) the set M is convex. Hence M is preconvex.

Assume that, for each out-Chebyshev set M in X, each exposed M -acting point of
the ball B is a smooth point of the ball B. Any Chebyshev set is an out-Chebyshev
set, and hence, by the assumption, for each Chebyshev set N in X, each exposed N -
acting point of the ball B is a smooth point of the ball B. This proves implication
f)⇒ d) (⇔ a)⇔ b)⇔ c)).

By Corollary, in a finite-dimensional space any out-Chebyshev set is necessarily pro-
jection closed. Hence, by Remark 1, for each out-Chebyshev set M in X, the set of M -
acting points of the ball B coincides with the set of M -acting points of the ball B. This
proves equivalence f)⇔ e). Implication d)⇒ e) is clear, because any Chebyshev set is an
out-Chebyshev set. This proves Theorem. ◀
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