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Abstract. World Bank macrodata of every country on our planet show that national in-
comes per capita account for a major part of population disparity and these follow usual
distributions well known in the literature in almost all continents. Measuring and compar-
ing disparity is a huge task that requires assembling the relative nature of small and large
national incomes without distinctions. This is the main reason that pushes us to consider
in this paper the Atkinson inequality index (continuous case) developed towards the end of
the 20th century in order to measure this disparity. Since then its nonparametric estima-
tor has not been developed but rather a well-known classical discrete form. This makes the
estimation or measurement of economic inequalities not very complex. In this paper, we
construct a kernel estimator of the Atkinson inequality index and by extension that of its
associated welfare function, then we establish their almost sure asymptotic convergences.
Finally, we explore the performance of our estimators in a simulation study and draw
conclusions about national incomes per capita on each continent and then globally by
making comparisons with the classical form, based on World Bank staff estimates based
on sources and methods from ”The Changing Wealth of Nations”. The results obtained
highlight the interest of kernel-based measures as well as the sensitivity of the index with
respect to the inversion parameter.
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1. Introduction

Measuring inequality is essential to understanding the distribution of wealth in a society
and changes in the social structure. It helps guide public policies, particularly those of
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redistribution, and measure their impact. To measure economic inequality, there is a
wide variety of tools that represent different points of view on the object studied. After
reflecting on the relevant level of analysis of inequality, this article presents the different
indicators that allow us to assess the extent of economic inequality, its evolution and its
persistence. It then shows the normative scope of the choice of indicators in relation to
considerations of social justice. After having been ignored for several decades, the issue
of inequality is back in the spotlight. The recent reopening of inequality raises questions
and arouses serious concerns. Inequalities refer to differences that generate phenomena
of social hierarchy. Differences can relate to the allocation of a resource that is unequally
distributed or refer to unequal access to certain goods or services: this is how we speak of
income inequality. Economic inequalities traditionally refer to inequalities of income and
wealth. These inequalities are the subject of particular attention due to the importance
in our societies of the economic dimension in the social valuation of individuals. If not all
inequalities are unfair, the assessment of the fair or unfair nature of a situation is always
done in the light of a standard of equality in relation to which the situation is evaluated.
Thus, depending for example on whether we value equality of situations or equality of
rights, a different view will be taken of the same situation. It is thus impossible to think
of inequalities without reference to a conception of social justice in relation to which a
judgment will be made on reality. This renewed interest in the study of inequalities stems
in part from publications that have highlighted their increase. We can notably cite the
work of Piketty [10] on this question. One of the main contributions of this author (with
others) is to have enabled the dissemination of statistics, in particular on high incomes,
making it possible to precisely measure the evolution of inequalities. Documenting the
existence of inequalities and having precise information on their variation is a necessary
prerequisite for any scientific debate. Far from being simply technical, the discussion
around the choice of a relevant indicator to measure inequalities is in reality a scientific
challenge.

It should also be noted that the issue of the well-being of the population is of ma-
jor importance in the political, social and economic spheres. Well-being means that the
population has sufficient means to meet its needs, organise its life independently, use
and develop its abilities and pursue its goals. This cannot happen without appropri-
ate framework conditions. The term well-being is used here as a synonym for quality
of life. Well-being is considered not only in its material and financial dimensions, but
in a broader perspective that encompasses the immaterial situation of the population.
Material resources are income and wealth, which enable the individual to meet his or her
needs. But other material dimensions, such as housing and work, are taken into account in
measuring well-being. Education, health and social relations are part of the immaterial
dimensions of well-being, which also encompass the legal and institutional framework
that allows citizens to participate in political life and ensures the physical security of
people. Finally, the concept of well-being includes environmental aspects such as water
quality, air quality and noise pollution. In an approach to well-being that aims to be as
broad as possible, it is important to consider not only objective living conditions, but
also their subjective perception by the population, namely what the population thinks,
for example, of its housing conditions and the state of the environment, its feeling of
security, its degree of satisfaction with the world of work and with life in general. In-
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equality indices aim to provide information on the situation of the population. To this
end, it is necessary to grasp a large number of elements that constitute well-being and
to describe its different facets. Inequality indices provide statistical information on the
state and evolution of well-being in a broad context, and which can serve as a basis for
forming public opinion and making political decisions (see also Harper [14]).

Inequality indices are classified by categories. In this paper, we will cite the most
widespread ones. Generally speaking, inequality measures fall into two broad categories
depending on the approach used to calculate them: descriptive measures and normative
measures (see Sen [18]). Descriptive inequality measures are usually mathematical or
statistical formulas, for example the Gini index (see Agbokou et al. [5] and also Baner-
jee [8]). Therefore, the characteristics of these indices depend on their mathematical or
statistical properties, respectively. Most inequality indices are descriptive in nature. Nor-
mative inequality indices are derived from a social welfare function based on a prior value
judgment about the effects of inequality on social welfare. These measures combine the
inequality index with a social evaluation and specify whether inequality is harmful or
not, as well as the degree of welfare that a society loses or gains because of this inequal-
ity. Atkinson [6], [7] inequality indices are among the most frequently cited normative
measures. Note that the inequality indices examined here do not necessarily satisfy all of
axioms (see Sen et al. [19]). For example, the Atkinson index satisfies almost all of the
axioms, but it is not additively decomposable. Note also that there are also inequality
measures derived from entropy that we will not discuss here.

We denote by X a continuous random variable representing income. For simplicity,
let X be strictly positive (no zero or negative income), f(x) is its probability density,
F (x) is its distribution function representing the cumulative distribution of income and
µ the average income. The consideration of a welfare function to define an inequality
index is illustrated first and foremost by the Atkinson index. We start with the following
welfare function:

W (θ) =

∫

R

x1−θ

1− θ
f(x)dx. (1)

The inequality measure that we deduce from this simple welfare function is written as:

A(θ) = 1−

[∫

R

(
x

µ

)1−θ

f(x)dx.

] 1
1−θ

, (2)

where θ > 0 is the inequality aversion parameter. We generally use values between 0 and
1 for θ. For θ = 1, the form is indeterminate and we remove the indeterminacy by taking
as a welfare function:

W (1) =

∫

R

log(x)f(x)dx,

and the corresponding form of the index in this case is therefore

A(1) = 1−
1

µ
exp

[∫

R

log(x)f(x)dx

]
. (3)

For θ −→ 0, we come across a Rawlsian measure, Rawls [17], where only the fate of the
poorest matters to society. The Atkinson index has a value in [0, 1]. It is worth 1 when an
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individual has everything and the others nothing. The welfare function associated with
this index is the one that weights the observations by their rank. It is the poorest who
will receive the greatest weight. We therefore deduce it, according to the formulas (1)
and (2), in the form:

W (θ) =

{
[µ(1−A(θ))]1−θ , if θ 6= 1 ,
log[µ(1−A(θ))], if θ = 1.

(4)

Several authors have worked on the parametric estimation of the Atkinson index.
We can start by citing Guerrero [13] who was one of the first to estimate the aversion
parameter to determine the degree of inequality for a given income distribution, with a
construction of confidence intervals. We can also cite Biewen et al. [10] and Tchamyou
[21] to name only these. The aim of this paper is to provide a nonparametric estimation
of the Atkinson inequality index (2), based on the kernel method. Then a simulation
study will be done on simulated or real data. Finally we will make a comparative study
of this estimator with the one that already exists in the literature.

2. Description, Materials and Methods

2. 1. Interpretation of the Atkinson index: graphical approach and approximation

O

A

B

C

D

Mean income

Utilitarian welfare function

EquallyDistributed Equivalent

Welfare function

Fig. 1. Atkinson inequality index graphic description

The basis of the measurement of Atkinson inequalities is based on the concept of
equitably distributed equivalent income that we denote X∗. Income X∗ is the income
that, if all individuals had this amount, would give the same level of social utility as
the existing one (W ). Taking the case of two individuals, we can graphically represent
the construction of the Atkinson index. Figure 1 illustrates this concept of equitably
distributed equivalent. This graph shows the welfare function constructed on the space
of individual incomes. The (Ox) axis shows the income of individual 1, while the (Oy)
axis shows that of individual 2. If X0 is the income of the first individual and X1 that
of the second, the average income is X . Suppose the income distribution is such that
point A prevails i.e. the point where we have X0 > X1. In the absence of inequality
aversion (θ = 0), utilitarian welfare would prevail i.e. the straight line. With this welfare
function, the only way to have equal incomes at the same level of welfare is therefore to
give an average income to both individuals i.e. X. Since inequality aversion is zero, we
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are not willing to reduce the size of the butter to have more equal shares. With inequality
aversion, the convex welfare function would prevail. Now, starting from A, we can find
a point where incomes are equally distributed at the same level of welfare. Since the
welfare function is convex, income X∗ must be less than average income X. Income X∗

is the abscissa of point B of the 45 degree line that has the same social welfare as A
and C. Even though total income (the sum of the two individual incomes) is less than
XA, it is compensated by the gain in equality of the distribution. The reason being that,
since inequality aversion is positive, we are now willing to pay the lower price of butter in
order to have more equal shares. Equality is measured by the ratio X∗/X. If this ratio is
equal to 1 then each individual has the same level of income or if the welfare function is
utilitarian (there is no perceived inequality). The approximatif Atkinson inequality index
can therefore be expressed as follows (see Bellù et al. [9]):

Ã = 1−
X∗

X
.

Instinctively, this index tells us how much income we are willing to give up to have equal
income. We therefore deduce that if the welfare is of the discrete form

W̃ (θ) =





1

n

n∑

i=1

X1−θ
i

1− θ
, if θ 6= 1 ,

1

n

n∑

i=1

log(Xi), if θ = 1 ,

(5)

then the discrete Atkinson index is given by:

Ã(θ) =





1−

[
1

n

n∑

i=1

(
Xi

X

)1−θ
] 1

1−θ

, if θ 6= 1 ,

1−
1

X
exp

[
1

n

n∑

i=1

log(Xi)

]
, if θ = 1 .

(6)

The formulas (or estimators if we can say so) (5) and (6) are the most used in the
literature so far and would reveal inadequacies following the variation of the data since
most of the data follow a distribution or at worst approximately a distribution. Hence the
need to construct a non-parametric estimator or kernel estimator which often presents
satisfactory results.

2. 2. Construction of the kernel estimator

Kernel estimation (or Parzen-Rosenblatt method or KDE) is a non-parametric method
for estimating the probability density of a random variable. It is based on a sample of a
statistical population and makes it possible to estimate the density at any point of the
support. In this sense, this method cleverly generalizes the histogram estimation method.
Kernel density estimation is used to obtain a smooth estimate of the data distribution
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without making assumptions about the shape of the distribution and it is famous for its
surprising smoothing character.

Let (Xi)16i6n be a random sample of size n from a population X with density
function f , which represents the distribution of income. Xi, for i ∈ [|1, n|], designating
the respective income of the n individuals, are independent and identically distributed
(i.i.d.) observations. The main of nonparametric density estimation is to estimate f with
as few assumptions about f as possible. Among the existing kernel density estimators,
we choose the classic and most famous case well known in the literature, because of its
simplicity for independent observations. This estimator depends on a parameter called
smoothing parameter or bandwidth parameter. It is defined by:

f̂n(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
, x ∈ R , (7)

where h = h(n) = hn is the bandwidth parameter depending on the sample size n
and K a probability density function called kernel function verifying certain particular
properties called regularity properties.

From the estimator (7) of the distribution function f , it is obvious that we obtain an
estimator of the Atkinson index (2), which is defined by:

Ân(θ) = 1−

[∫

R

(
x

µ̂n

)1−θ

f̂n(x)dx.

] 1
1−θ

=

= 1−

[
1

nh

n∑

i=1

∫

R

(
x

µ̂n

)1−θ

K

(
x−Xi

h

)
dx.

] 1
1−θ

, (8)

if θ 6= 1,

and

Ân(1) = 1−
1

µ̂n

[∫

R

log(x)f̂n(x)dx

]
=

1−
1

µ̂n

exp

[
1

nh

n∑

i=1

∫

R

log(x)K

(
x−Xi

h

)
dx.

]
, (9)

where µ̂n is the estimator average income µ. It is easy to verify that µ̂n satisfies:

µ̂n =

∫

R

xf̂n(x)dx =
1

n

n∑

i=1

Xi .

And consequently, we can obtain the nonparametric estimator of (4)

Ŵn(θ) =

{
[µ̂n(1− Ân(θ))]

1−θ, if θ 6= 1 ,

log[µ̂n(1− Ân(θ))], if θ = 1.
(10)

The following paragraph provides a study of the near convergence or strong consis-
tency of our estimators and also those of some estimators which will result from them
under certain regularity hypotheses.
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3. Study of the Convergence of the Atkinson

Inequality Index

In all that follows, besides the classical regularity conditions (see in Agbokou [1]), well
known in the literature, on the kernel function K and on the smoothing parameter h, we
consider the following hypotheses.

3. 1. Assumptions

3. 1. 1. The model assumptions

A1. The random variable X takes values in R+ or a compact subset of R+.
A2. The density function f of X is uniformly continuous on its support and satisfies

∫

R

xτf(x) = E(Xτ ) > 0 , ∀ τ > 0.

A4. There exists a strictly positive constant η such that µ > η and θ takes values in [0; 1[.
A5. The function φ : y 7−→ yα on R+ verifies the following conditions:

i. there exist κ > 1 strictly positive constant such: —φ(u)−φ(v)| 6 ακ|u−v| , ∀ α >
1 and ∀ u, v ∈ R+;

ii. there exist Cα > 1 strictly positive constant such: φ(|u−v|) 6 Cα|u−v| , ∀α ∈ [0; 1]
and ∀ u, v ∈ [0, 1];

iii. there exist Qα > 1 strictly positive constant such: φ(u+ v) 6 Qα(u
α + vα) , ∀α ∈

[0; 1] and ∀ u, v ∈ R+.

3. 1. 2. The kernel assumptions

K is a symmetric kernel of bounded variation on R vanishing outside the interval [−a, a]
for some a > 0 and satisfying:

K1.

∫

R

K(u) = 1;

K2.

∫

R

uK(u) = 0;

K3.

∫

R

uτK(u) = ν(K) > 0 , ∀ τ > 0, τ 6= 1.

3. 1. 3. The bandwidth parameter hypothesis

The bandwidth parameter h = (hn)n∈N is a sequence of positive nonincreasing real
numbers satisfying:

H1. h
τ
n −→ 0 , ∀ τ > 0, n −→ +∞;

H2. nhn −→ +∞, n −→ +∞.
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Remark 1. The assumptions A1 − A2, K1 − K2 and H2 are quite standard. A1 −
A4, A5.i and iii., K1 − K3 and H1 − H2 insure the strong uniform convergence of the
estimators (8) and (9) to (2) and (3) respectively. Finally all the assumptions ensure the
strong uniform convergence of (10) to (4).

To simplify the writings and make them easier to handle, we adopt the following
notations:

◦ ∆(θ) =

∫

R

x1−θf(x)dx and A(θ) then becomes: A(θ) = 1−

[
∆(θ)

µ1−θ

] 1
1−θ

,

◦ Λ = exp

[∫

R

log(x)f(x)dx

]
and A(1) is written in the form: A(1) = 1−

Λ

µ
.

Consequently, it is clear that their kernel estimators are respectively ∆̂n(θ) and Λ̂n.

3. 2. Strong consistency

In this subsection, we prove the consistency of our estimator and give a rate of conver-
gence. Our first result is the almost sure uniform convergence with an appropriate rate
of the estimators ∆̂n and Λ̂n stated in Proposition 1, which are the key for investigating
the strong consistency of Ân(θ) and Ân(1) given by Theorem 1. The last result deals

with the strong consistency of the welfare function estimator Ŵn(θ) given by Corollary.

Proposition 1. Under assumptions A1, A5 − iii., K1, K3 and H1 we have:

(i).

|∆̂n(θ) −∆(θ)| −→ 0 a.s., n→ +∞ ∀ θ ∈ [0, 1[.

(ii). In particular for θ = 1, we have,

|Λ̂n − Λ| −→ 0 a.s., n→ +∞ .

The Proposition 1 leads to the convergence of the inequality index function which is
established by the following theorem:

Theorem 1. In addition to the assumptions of the Proposition 1, if hypotheses A2,
A4 −A5 − i., K2 and H2 are satisfied, then we obtain:

(i).

|Ân(θ) −A(θ)| −→ 0 a.s., n→ +∞ ∀ θ ∈ [0, 1[.

(ii). In particular, if θ = 1, then we get,

|Ân(1)−A(1)| −→ 0 a.s., n→ +∞ .

As a consequence of the Theorem 1, we arrive at the strong constancy of the estimator
of the welfare function (10).
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Corollary 1. Under the same hypotheses as Theorem 1, assume that hypothesis A5− ii.
is verified, then we obtain:

|Ŵn(θ) −W (θ)| −→ 0 a.s., n→ +∞ ∀ θ ∈ [0, 1].

Corollary 2. Under the same assumptions as Theorem 1, we assume that the sequence
(Xi)16i6n of i.i.d. random variables is such that E(Xi) = µ and Var(Xi) = σ2 ∀ i ∈
{1, · · · , n}. Then for n large enough, we get:

Ân(θ)−A(θ) −→ N (0, s2) a.s. ∀θ ∈ [0, 1],

where

s2 = (1 + µ2)

(
1 +

σ2

µ2

)
.

3. 3. Appendix of proofs

As for the proofs of the previous proposition, theorem and corollary, we need some very
important or primordial lemmas whose demonstrations will be made or will be given here
as well.

Let us first recall that if {Xi}n1 are i.i.d random variables with a distribution F .
Consider a parametric function Π for which there exists an unbiased estimator. The
parametric function Π can be expressed in the following form:

Π(F ) = E[ψ(X1, · · · , Xl)] =

∫

Rl

ψ(X1, · · · , Xl)dF (x1)× · · · × dF (xl),

where Ψ is a function of l i.i.d random variables from {Xi}
n
1 with l 6 n. For any function

Ψ , the corresponding U-statistic for the estimation of Π based on a random sample of
size n is obtained by averaging Ψ symmetrically over the observations

Un = U(X1, · · · , Xn) =
1(
n
l

)
∑

s

ψ(X1, · · · , Xl),

where
∑

s

represents the summation over the

(
n
l

)
combinations of l distinct elements

ij , j ∈ {1, · · · , l} from {1, · · · , n}. In particular, we have:

Lemma 1. For ψ(x) = xm (m > 0), the corresponding U-statistic is

Um = U(X1, · · · , Xn) =
1

n

n∑

1

Xm
i

and for n large enough, we get

Um −→ µm = E[Xm] =

∫

R

xmdF (x) .

In particular for m = 1, we set µ̂n = U1 −→ µ = µ1.
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Proof. The proof of this lemma is similar to those found in Serfling [20] and Lehmann
[15]. Thus we make an exception to this one. ◭

Lemma 2. For every p ∈]0; 1], the function defined on I = [0;+∞) by Φ : z 7−→ zp

satisfies the following condition:

∀ u, v ∈ I : |Φ(u)− Φ(v)| 6 p|u− v|p , (11)

and the number p is the maximum of all values that verify this property.

Proof. For u, v let us suppose that u > v. Aware that p− 1 6 0, we have

|Φ(u)− Φ(v)| = up − vp =

∫ u

v

pzp−1dz

6

∫ u

v

p(z − v)p−1dz = (u− v)p 6 |u− v|p because u > v.

In this case, the corresponding p of the inequality (11) which satisfies rhe condition is
equal to 1.

On the other hand, from the relation (11), setting u = 1 and v = 0. It follows p > 1.

Now assume that p > 1. If there exists another real number q such that q > p and
verifies the inequality (11), then we obtain

∀ u, v ∈ I : |Φ(u)− Φ(v)| 6 q|u− v|q . (12)

By setting v = 0 in relation (12), we have

|Φ(u)| = up 6 xq ∀ u > 0.

Taking into account that p−q < 0, we get up−q 6 q. This is absurd because the left-hand
side diverges towards +∞ when u tends towards 0. This brings the proof of this lemma
to term. ◭

The lemmas having been established, let’s move on to the proofs of the main results
obtained.

Proof. (Proposition 1)

(i) From the sequence of functions ∆̂n in θ, we obtain

∆̂n(θ) =

∫

R

x1−θ f̂n(x)dx =
1

nh

n∑

i=1

∫

R

x1−θK

(
x−Xi

h

)
dx.
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A change of variable, the use of hypotheses and A5 − ii, K1 −K3, allows us to write
successively

∆̂n(θ) =
1

n

n∑

i=1

∫

R

(Xi + wh)1−θK(w)dw ,

6
Q1−θ

n

n∑

i=1

∫

R

(X1−θ
i + w1−θh1−θ)K(w)dw ,

6 Q1−θ

[
1

n

n∑

i=1

X1−θ
i + h1−θ

∫

R

w1−θK(w)dw

]

6 Q1−θ

[
U1−θ + h1−θν(K)

]
.

Then we get

|∆̂n(θ)− U1−θ| 6Mh1−θ whereM > 0; is a constant.

In other words
|∆̂n(θ)− U1−θ| = O

(
h1−θ

)
a.s.

Furthermore, we have

|∆̂n(θ) −∆(θ)| 6 |∆̂n(θ)− U1−θ|+ |U1−θ −∆(θ)|. (13)

For n large enough and under hypothesis H1, Lemma 1 applied to inequality (13)
completes the first part (i) of the proof of this proposition.

(ii) The second part is inspired by the first, with a few exceptions since it is a special
case. Since function z 7−→ exp(z) is a convex function, Jensen’s inequality allows us
to write

Λ̂n = exp

[∫

R

log(x)f̂n(x)dx

]
,

6
1

n

n∑

i=1

∫

R

xK

(
x−Xi

h

)
dx.

The same change of variable and the use of the same hypotheses lead to

Λ̂n 6
1

n

n∑

i=1

Xi + h

∫

R

wK(w)dw ,

6 U1 + hν(K) beacause here w > 0

now we get
|Λ̂n − U1| 6Mh, where M > 0 is a constant.

By using a similar inequality like that of (13) with Λ̂n, Λ and U1, Lemma 1 and
hypothesis H1 complete the last part of this proposition for n large enough. ◭
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Proof. (Theorem 1)

(i) Thanks to hypothesis A2, A5 − i, we can write

|Ân(θ)−A(θ)| =

∣∣∣∣∣∣

[
∆̂n

µ̂1−θ
n

] 1
1−θ

−

[
∆

µ1−θ

] 1
1−θ

∣∣∣∣∣∣

6

(
1

1− θ

)κ
∣∣∣∣∣
∆̂n

µ̂1−θ
n

−
∆

µ1−θ

∣∣∣∣∣

6

(
1

1− θ

)κ{
µ1−θ

∣∣∣∣
1

µ̂1−θ
n

−
1

µ1−θ

∣∣∣∣+
1

lim infn←→+∞ µ̂1−θ
n

∣∣∣∆̂n −∆
∣∣∣
}

6 M

[∣∣∣∣
1

µ̂1−θ
n

−
1

µ1−θ

∣∣∣∣+
∣∣∣∆̂n −∆

∣∣∣
]
,

where

0 < M = max

{
µ1−θ;

1

lim infn←→+∞ µ̂
1−θ
n

}
×

(
1

1− θ

)κ

.

Lemma 1 associated with the Mapping Theorem allows us to obtain

∣∣∣∣
1

µ̂1−θ
n

−
1

µ1−θ

∣∣∣∣ −→ 0, a.s. n←− +∞. (14)

Thus (14) and Proposition 1− (i) completes the first part of this theorem.
(ii) As previously in (i), the same qssumptions give us:

|Â(1)− A(1)| =

∣∣∣∣∣
Λ̂n

µ̂
−
Λ

µ

∣∣∣∣∣ ,

6 µ

∣∣∣∣
1

µ̂
−

1

µ

∣∣∣∣+
1

lim infn←→+∞ µ̂n

|Λ̂n − Λ|

6 M

{∣∣∣∣
1

µ̂
−

1

µ

∣∣∣∣+ |Λ̂n − Λ|

}
,

where

0 < M =

{
µ;

1

lim infn←→+∞ µ̂n

}
.

As previously in proof (i), Lemma 1 associated with the mapping theorem and Propo-
sition 1− (ii) complete the last part of this theorem. ◭

Proof. (Corollary 1)
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(i) This first part will concern the case where θ ∈ [0; 1[. Lemma 2 and the Triangle
Inequality lead us to

|Ŵn(θ)−W (θ)| =

∣∣∣∣
[
µ̂n(1 − Ân(θ))

]1−θ
− [µ(1 −A(θ))]1−θ

∣∣∣∣

6 (1− θ)
∣∣∣µ̂(1− Â(θ)) − µ(1−A(θ))

∣∣∣
1−θ

6 (1− θ)
{
(1 +A(θ))|µ̂n − µ|+ µ̂n|Ân(θ)−A(θ)|

}

6 Mθ

{
|µ̂n − µ|+ |Ân(θ) −A(θ)|

}
,

where

0 < Mθ = max

{
1 +A(θ); lim sup

n←−+∞
µ̂n

}
× (1− θ) , ∀ θ ∈ [0; 1[.

Thus Lemma 1 and Theorem 1− (i) complete the first part of this corollary.
(ii) This second and last part concerns the case where θ = 1. For this case especially,

we assume that A(1) and its estimator Ân(1) are all different from 1 or all do not

approach 1. Therefore µ(1 − A(1)) and µ̂n(1 − Ân(1)) are strictly positive. Let us

denote δ = min
{
µ(1−A(1)); µ̂n(1− Ân(1))

}
. We therefore have δ strictly positive.

Thus the function z 7−→ log(z) is
1

δ
−Lipschitzian on [δ; +∞ because its derivative in

absolute value is bounded above by
1

δ
. This leads us to write:

|Ŵn(1)−W (1)| =
∣∣∣log[µ̂n(1− Ân(1))]− log[µ(1 −A(1))]

∣∣∣

6
1

δ

∣∣∣µ̂n(1 − Ân(1))− µ(1−A(1))
∣∣∣

6 Mδ

{
|µ̂n − µ|+ |Ân(1)−A(1)|

}
,

where

0 < Mδ =
max

{
1 +A(1); lim supn←−+∞ µ̂n

}

δ
.

Thus Lemma 1 and Theorem 1− (ii) complete the last part of this corollary. ◭

Proof. (Corollary 2)

◦ For θ ∈ [0, 1[, we directly and successively draw these inequalities from the following
relation (see proof of the Proposition 1):

∆̂n(θ) 6 Q1−θ

[
1

n

n∑

i=1

X1−θ
i + h1−θ

∫

R

w1−θK(w)dw

]
.
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Using the property of monotonic increasing and the linearity of the mathematical expec-
tation and also ||a| − |b|| 6 |a− b|, then we have

E

[
∆̂n(θ)

]
6 Q1−θE

[
X1−θ

]
+ h1−θQ1−θν(K)

⇒ E

∣∣∣∆̂n(θ)−∆(θ)
∣∣∣ = O

(
h1−θ

)
. (15)

Moreover, we have

|Ân(θ)−A(θ)| 6 M

[∣∣∣∣
1

µ̂n

−
1

µ

∣∣∣∣+
∣∣∣∆̂n(θ) −∆(θ)

∣∣∣
]

⇒ E|Ân(θ)−A(θ)| 6 M

[
E

∣∣∣∣
1

µ̂n

−
1

µ

∣∣∣∣+ E

∣∣∣∆̂n(θ)−∆(θ)
∣∣∣
]
.

Thus for n large enough, we have E|Ân(θ)−A(θ)| −→ 0. In particular we obtain

E

[
Ân(θ)−A(θ)

]
−→ 0⇐⇒ E

[
Ân(θ)

]
−→ E [A(θ)] = A(θ).

We have just shown that the estimator is asymptotically unbiased. We can notice that
We can notice that (a − b)2 6 a2 + b2 (where a and b have the same sign) and also the
function z 7−→ zp, p > 2 is convex (this allows us to apply Jensen’s inequality). All this
allows us to write

(
Ân(θ) −A(θ)

)2
6

[∫

R

(
x

µ̂n

)1−θ

f̂n(x)dx

] 2
1−θ

+

[∫

R

(
x

µ

)1−θ

f(x)dx

] 2
1−θ

6

∫

R

(
x

µ̂n

)2

f̂n(x)dx +

∫

R

(
x

µ

)2

f(x)dx

6
1

µ̂2
n

[
1

n

n∑

i=1

X2
i

∫

R

K(w)dw + 2h
1

n

n∑

i=1

X2
i

∫

R

wK(w)dw + h2
∫

R

w2K(w)dw

]
+
µ2

µ2

⇒ E

[(
Ân(θ) −A(θ)

)2]
= µ2 +

µ2

µ2
+O

(
h2
)
= (µ2 + 1)

(
1 +

σ2

µ2

)
+O

(
h2
)
.

Furthermore we know that

Var
[
Ân(θ) −A(θ)

]
= E

[(
Ân(θ)−A(θ)

)2]
− E

2
[
Ân(θ) −A(θ)

]
.

So, from the relation (15) we have

Var
[
Ân(θ)−A(θ)

]
= (µ2 + 1)

(
1 +

σ2

µ2

)
+O

(
h2−2θ

)
a.s.

For n large enough, we have Var
[
Ân(θ) −A(θ)

]
−→ s2 = (µ2 + 1)

(
1 +

σ2

µ2

)
.
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◦ For θ = 1, we also have (see proof of Proposition 1):

Λ̂n 6
1

n

n∑

i=1

Xi + h

∫

R

wK(w)dw,⇒ E[Λ̂n] 6 E[Xi] + hν(K)

E|Λ̂n − µ| = O(h) a.s.

On the one hand the convexity of the exponential function, the triangular inequality and
||a| − |b|| 6 |a− b| allows us to have

E|Λ̂n − Λ| 6 E|Λ̂n − µ|+ E|Λ − µ| =⇒ E|Λ̂n − Λ| = O(h) a.s.

On the other hand

|Ân(1)−A(1)| 6 M

{∣∣∣∣
1

µ̂
−

1

µ

∣∣∣∣+ |Λ̂n − Λ|

}
.

Thus, for n large enough
E|Ân(1)−A(1)| = O(h) a.s. (16)

We have also

(
Ân(θ)−A(θ)

)2
6

{
1

µ̂n

exp

[∫

R

log(x)f̂n(x)dx

]}2

+

{
1

µ
exp

[∫

R

log(x)f(x)dx

]}2

6
1

µ̂2
n

exp

[
2

∫

R

log(x)f̂n(x)dx

]
+

1

µ2
exp

[
2

∫

R

log(x)f(x)dx

]

6
1

µ̂2
n

∫

R

x2f̂n(x)dx +
µ2

µ2
⇒ E

[(
Ân(θ)−A(θ)

)2]
6M

[
µ2 + h2ν(K)

]
+
µ2

µ2
.

For n large enough, we get

⇒ E

[(
Ân(θ)−A(θ)

)2]
= µ2 +

µ2

µ2
+O(h2) a.s. (17)

Formulas (16) and (17) give the variance as previously Var
[
Ân(θ)−A(θ)

]
= (1 +

µ2)

(
1 +

σ2

µ2

)
+O(h2) a.s. This which completes the proof of this corollary. ◭

4. Simulation

Before moving on to numericals, we were able to calculate the Atkinson inequality index
and welfare for certain probability distributions that will be useful for the rest.
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Tab. 1. Theoretical expressions of the Atkinson index and the welfare function

4. 1. Atkinson index for some usual probability distributions

However, theoretical calculations of the Atkinson index with probability distributions
are not easy or easy to determine. With other distributions, this seems very complex or
even impossible. We will spare you these details and the results obtained are grouped in
the Table 1. The theoretical calculation of the Atkinson index involves certain so-called
special functions which are defined by:

◦ Gamma function: Γ (a) =

∫
∞

0

za−1 exp(−z)dz , a ∈ R+

◦ Digamma function: ψ(a) =

∫
∞

0

za−1 log(z) exp(z)dz =

∫
∞

0

(
e−z

z
−

e−az

1− e−z

)
dz =

d

da
log[Γ (a)] , a ∈ R+

◦ Euler - Mascheroni constant: γ = −ψ(1) = −

∫
∞

0

log(z)e−zdz =

= lim
n−→+∞

(
n∑

k=1

1

k
− log(n)

)
≃ 0.577216664901532860
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◦ Beta function: B(a, b) =
Γ (a)Γ (b)

Γ (a+ b)
, a, b ∈ R+

Remark 2. Recall that the first lines of the expressions that are in the braces represent
the general case for θ 6= 1 and those of the second lines represent the particular case for
θ = 1.

The table being obtained, we choose one of these models to study the cobergence
of our nonparametric estimator with respect to that. Our choice is the Weibull model
because of its particularity in terms of application and its multitasking. The Weibull
distribution intervenes in almost all areas like that of Pareto in the estimations of in-
come inequality measures (see Agbokou [5]). To do this, with the data we have, we will
determine these parameters by the Maximum Likelihood (M.L.) method to obtain the
theoretical Atkinson index.

4. 2. Determination of the parameters of the Weibull distribution by the M.L. method

Due to its adaptability in fitting distributions or data particularly in data science, the
Weibull distribution has taken in recent years a major position in the field of parametric,
semi or nonparametric estimations. One of the main barriers to a more important or
wider use of the Weibull distribution is the complexity of estimating its parameters.
Regrettably or sadly, the calculations that this estimation involves are not always simple
enough. This subsection deals with the estimation of maximum likelihood in samples of
the Weibull probability density. The likelihood function of this sample (X1, · · · , Xn) is
given by:

L(X1, · · · , Xn, (α, β)) = Πn
i=1

α

β
Xα−1

i exp

(
−
Xα

i

β

)
.

We let L(α, β) = L(X1, · · · , Xn, (α, β)) = logL(X1, · · · , Xn, (α, β)) represent the log-
likelihood, then we derive L(α, β) respectively with respect to α and with respect to β
then by setting the two partial derivatives equal to zero each, we obtain:





∂L(α, β)

∂α
=
n

α
+

n∑

i=1

log(Xi)−
1

β

n∑

i=1

Xα
i log(Xi) = 0,

∂L(α, β)

∂β
= −

n

β
+

1

β2

n∑

i=1

Xα
i = 0.

(18)

On eliminating β between these two equations of the system (18) and simpljfying the
term, we get:

n∑

i=1

Xα
i log(Xi)

n∑

i=1

Xα
i

−
1

α
−

1

n

n∑

i=1

log(Xi) = 0. (19)
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We note that equation (19) is difficult or even impossible to solve analytically. We will
therefore use a numerical resolution or iterative methods such as the Newton method
or the fixed point method or the secant and regula falsi method in order to find the
estimator α̂ of the parameter α. If the estimator α̂ is obtained, we therefore deduce from
(18), the estimator β̂ of β by the equality:

β̂ =
1

n

n∑

i=1

X α̂
i .

4. 3. Real data description and simulation results

For our study, we focused on the World Bank data that could be easily found on their
website DataBank We were interested in the ”adjusted net national income per capita
(current US dollars)” of 2021 for each country in the world (at least for those who have it
because we could not find the updated data for all countries). Since the data is allocated
by region according to the World Bank’s breakdown, we organized this data by continent
as follows:

◦ Europe Zone (1) = European Union
◦ America Zone (2) = America and the Caribbean + North America
◦ Asia Zone (3) = East Asia and the Pacific + South Asia + Middle East + Central
Asia
◦ Africa Zone (4) = Sub-Saharan Africa + North Africa
◦ Eurasia Zone (5) = Europe Zone + Asia Zone
◦ World (6) = the sum of all the above zones

Remark 3. The last two groupings aim not only to study the inequalities of countries
between two countries or between countries of the world but also to see the performance
of our estimators when the sample size increases and also the impact of the inversion
parameter on them depending on these sizes.

Table 2 provides a statistical description of some position and dispersion character-
istics of these data taken to the thousandth in order to facilitate the calculations of the
programming in the rest of this subsection using Matlab software.

Tab. 2. Statistical description of data from the World Bank website

In view of the statistical summary of Table 2, we notice that the data, whatever the
area, are very heterogeneous since the coefficient of variation of each of these groupings
is strictly greater than 0.30. This heterogeneity character makes this study very exciting
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since with simulated data (which we do not present here), we always had homogeneous
data which contribute to the robustness of our estimators from the size n = 30. Thus
the other objective is to see the behavior of our estimators facing heterogeneous data
because we know that heterogeneous data in statistical study such as estimates and
forecasts negatively affect or slow down the robustness of the estimators and by ricochet
impact the forecasts.

Thus, for the simulation of our estimators, we chose as a statistical kernel K, the
Epanechnikov kernel also called the ”parabolic” kernel. It is named after the author
Epanechnikov [12], who used and studied it for the first time in 1969. On the one hand,
it is well known in the literature that the kernel has little influence on the performance of
nonparametric estimators. What motivates this choice is that this kernel allows to have
the most efficient estimator for the density, which concerns us in this document. On the
other hand, the literature reveals that the choice of the smoothing parameter h = hn has
a major influence on the robustness of the kernel estimator (see Agbokou et al. [2], [3]).
The process of this choice in the presence of real data is not as easy as in the presence
of simulated data. We therefore opted for the numerical cross-validation method which
consists in minimizing the integrated squared error defined from a series of observations
or data (xi)16i6n of size n. This error is defined by:

Φ(hn) =

∫ x(n)

x(1)

(
Ân(θ)−A(θ)

)2
dx,

where x(1) = min(xi) and x(n) = max(xi) for all i ∈ {1, · · · , n}.
The bandwith parameter selection rule results in the minimization of this criterion:

ĥn = argmin
hn

Φ(hn). (20)

The smoothing parameter of (20) thus obtained is asymptotically optimal. To deter-
mine the parameter h, our Matlab code is programmed in such a way that we obtain at
the same time the RMSE (Residual Mean Square Error). This is the root mean square
deviation, which is the standard deviation of the residuals (prediction errors). The resid-
uals are the measure of the deviation between the data points and the regression line.
The RMSE metric is the measure of the distribution of these residuals. In other words,
it indicates the concentration of the data around the line of best fit. In our work we have
two parameters h to determine and therefore two RMSEs. We denote them respectively
h1n for the estimator of the Atkinson index and h2n for its associated welfare function.
Similarly, their errors or residuals are respectively noted RMSE1 and RMSE2. To get
an idea of the impact of the aversion parameter, we chose the parameter θ such that
θ ∈ {0.01, 0.05, 0.1, 0.5, 0.9, 1} for each sample size (or area or region). We also calculated
for each θ the classical estimators (usual classical forms) of the Atkinson index (6) and its
welfare function (5) in order to see if they best estimate the theoretical Atkinson index
and its theoretical welfare function.

Let us recall that the two parameters of the theoretical Atkinson index and its theo-
retical welfare function cannot be taken arbitrarily, we opted for the maximum likelihood
(M.L.) method with the intervention of Newton’s numerical method in order to be able
to assign a value to each of these parameters.
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The results obtained are summarized in Table 3. A visualization of all these results
obtained is summarized in Figure 2.

Tab. 3. Comparison of theoretical values and estimates of the Atkinson index and the
welfare
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European area

America area

Asia area

Africa area

Eurasian area

World

Fig. 2. Comparison of theoretical and estimates curves of the Atkinson
index and the welfare
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4. 4. Discussion

First of all, we note that kernel estimators provide very good adjustments for large
samples, i.e. from size n = 70 and these provide better adjustments compared to those
that are classical. Apparently these estimators are less sensitive (evolve linearly) for
values less than 1 of the aversion parameters compared to those that are classical. In
addition, we note that, the more the parameter increases, the more the indices increase
sharply and their welfare functions decrease slightly. For θ = 1 all the estimators, even
those qualified as classical, are very sensitive and their values sometimes differ in terms
of the direction of variations (some increase when the others decrease for the Atkinson
indices). Generally speaking, for Theta close to 0, the values of the estimators are very
small and in the neighborhood of 1 or at 1, they are very large. This character shows
the major impact of the aversion parameter for the study of inequalities in a population
and it poses a great debate because a bad choice of the aversion parameter can lead us
to make a hasty conclusion or one that may be far from reality. Thus for a global view,
we calculated the average of all the values of the Atkinson index, which is provided by
the following Figure 3:

Fig. 3. Diagram of the average Atkinson indices and average welfare values

This last figure shows that the Atkinson index whatever the type of estimator does not
exceed 0.35 in each zone and therefore on each continent. Although these averages do not
allow us to conclude effectively or to draw an efficient objective conclusion, nevertheless
they allow us to have more or less or approximately an overall view of the trend of the
Atkinson indices and the values of the associated welfare in each region or zone. On the
one hand, we therefore conclude that Figure 2 and Table 3 have provided us with the
behavior of our estimators in relation to the progressive choice of the aversion parameter
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θ. On the other hand, to estimate the Atkinson indices and the values of social welfare,
it is therefore essential to find an estimator of the parameter θ or therefore find the
corresponding value of θ for each data or observation. Thus we therefore propose here
to find the value of θ for each of our observations. To do this, the function Φ (4. 3. )
therefore becomes a bivariate function whose variables are the bandwidth and aversion
parameters. The optimization problem (20) is therefore a bivariate optimization problem
on the unit square surface and becomes:

(
ĥn, θ̂n

)
= arg min

hn,θ∈[0,1]
Φ(hn, θ).

Let θ̂1n and θ̂2n be the respective aversion parameters of the Atkinson index and
welfare. The only parameters that do not change compared to the previous results are
the parameters α̂ and β̂ from the M.L method. The results obtained are grouped in Table

4, giving the values of the Atkinson indices and those of welfare after estimating the
aversion parameters. Since the classical Atkinson indices and associated welfare function
do not provide a very good fit, we no longer present it in this table.

Tab. 4. Atkinson indices and welfare values based on the estimated aversion parameter

Table 4 allows us to draw a more or less effective conclusion because it corresponds to
the true trends of the Atkinson index. However, we can see that in each zone the aversion
parameter is around 0.5 on average for the Atkinson index except for the Europe zone.
This could be explained by the fact that the sample size is small, i.e. less than 50. On
the other hand, for large samples, it is lower. As for welfare, the aversion parameter
is on average 0.3. This diversity of values taken by the aversion parameter shows once
again the importance of its estimation because it has more influence on the estimators.
Thus, compared to the previous results (where θ is taken arbitrarily), we see that there
is a slight significant difference because the indices in this case are around 0.35 or even
exceed it. However, it can be noted that inequality is more glaring in the Americas than
on other continents. This may be due to the per capita income of North America which
is more than ten times higher compared to those of the countries of the South or the
Caribbean. In Africa and Europe, this inequality is almost identical to that in the world.
Inequality is less reduced in Asia and this could be explained by the almost identical per
capita income of several countries of the Gulf and the Pacific. Overall, the disparity is
significant on all continents and world leaders must make much more efforts to raise the
level of net national income per capita so that the inequality index on each continent or
even in each country is at least higher than 0.7 by taking appropriate decisions for the
development of each country.
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5. Conclusion

In this paper, we have done a little more in-depth study on the Atkinson index and
its welfare function than we had thought at the beginning of this study. First, we
focused on the construction of the two estimators and then the study of their almost
spure asymptotic convergence as well as asymptotic normality. Then, we looked at the
simulation study which confirms the robustness of the two estimators for large sample
sizes by working with real data which are very heterogeneous. These studies revealed
that the aversion parameter has a huge influence on the estimation of the Atkinson
index and cannot be chosen randomly or arbitrarily for an efficient study. We have
therefore proposed a numerical estimation of said parameter by the cross-validation
method in order to overcome this problem of choosing the aversion parameter. Finally,
our study has shown that disparity in the world is a current problem and that it is not
to be remedied in the short term but it is a collective problem and to be resolved in the
long term. As a consequence or open problem of this study, it should be noted that it is
therefore important to find a way to analytically estimate the aversion parameter using
either methods that already exist such as the maximum likelihood method, the method
of moments or the Bayesian method (as in Agbokou and al. [4]) or to find others (as in
Dabana and al. [11]) that could better help us, and this will be the subject of our future
work.

Acknowledgement. The authors thank the reviewers for their insightful comments
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1901-1998. Grasset, Paris, 2001 (in French).

17. Rawls J. A Theory of Justice. Oxford Univ. Press, London, 1972.
18. Sen A. On Economic Inequality. Clarendon Press, Oxford, 1973.
19. Sen A. On Economic Inequality. Clarendon Press, Oxford, 2nd edition, 1997.
20. Serfling R.J.Approximation Theorems of Mathematical Statistics. The Johns Hopkins
University, John Wiley & Sons, Inc., 1998.

21. Tchamyou V.S. Education, lifelong learning, inequality and financial access: evidence
from African countries. Contemp. Social Sci., 2020, 15 (1), pp. 7-25.


