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Abstract. In the paper, we derive sufficient conditions on the coefficients of a third-
order quasi-elliptic operator pencil, ensuring the minimality of its system of eigen- and
associated vectors corresponding to eigenvalues from the left half-plane. Additionally, we
prove a theorem on the minimality of decreasing elementary solutions to a homogeneous
equation in a Sobolev-type space.
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1. Some Definitions and Facts from the Theory of
Linear Operators

LetH be a separable Hilbert space and let A be a self-adjoint positive-definite operator on
H with the domain of definition Dom(A). When γ ≥ 0, let’s denote the Hilbert space Hγ

by introducing the scalar product (x, y)γ = (Aγx,Aγy) within the domain of definition
of the operator Aγ , i.e., in Dom(Aγ). When γ = 0, we assume that (x, y)0 = (x, y) and
H0 = H.
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The notation σ(·) will be understood as the spectrum of the operator (·).
Let’s consider in the Hilbert space H a third-order quasi-elliptic operator pencil [4]:

P (λ) = (λE −A)2(λ+A) + λ2A1 + λA2, (1)

where λ is the spectral parameter, E is the identity operator, and the remaining coeffi-
cients of the operator pencil P (λ) satisfy the conditions:

1) A is a self-adjoint positive-definite operator with a completely continuous inverse
operator A−1;

2) the operators B1 = A1A
−1 and B2 = A2A

−1 are bounded in H.
Let’s assume that

P0(λ) = (λE −A)2(λ+A), P1(λ) = λ2A1 + λA2.

Then

P (λ) = P0(λ) + P0(λ).

The operator pencil (1) can be represented in the form

P (λ) = (E + L(λ))A3, (2)

where

L(λ) = λ(B2 − E)A−1 + λ2(B1 − E)A−2 + λ3A−3.

Since A−1 is a completely continuous operator, and the operators B1 − E and B2 − E
are bounded operators, then L (λ) is an operator function with completely continuous
values. And since L(0) = 0, then E + L(λ) is invertible at the point λ = 0, therefore,
the operator pencil E + L(λ), according to M.V. Keldysh’s theorem [7], has a discrete
spectrum with a unique limit point at infinity. From the representation (2), it follows
that the operator pencil P (λ) also possesses this property. Note that all points of the
spectrum of the pencil P (λ) are poles of the resolvent P−1(λ).

Definition 1. Let x0 ̸= 0, x0, x1, x2, ..., xm ∈ H5/2 satisfy the conditions

P (λ0)x0 = 0,

P (λ0)x1 +
1
1!

dP (λ)
dλ

∣∣∣
λ=λ0

x0 = 0,

.......................................

P (λ0)xm + 1
1!

dP (λ)
dλ

∣∣∣
λ=λ0

xm−1 +
1
2!

d2P (λ)
dλ2

∣∣∣
λ=λ0

xm−2 +
1
3!

d3P (λ)
dλ3

∣∣∣
λ=λ0

xm−3 = 0.

Then λ0 is called an eigenvalue of the operator pencil P (λ), and x0, x1, ..., xm are eigen-
and associated vectors of the operator pencil P (λ) corresponding to the eigenvalue λ0.

It is evident that a single eigenvalue λ0 may correspond to multiple sets of eigen- and
associated vectors. In the future, we will assume that all sets of eigen- and associated
vectors are canonical [7].

Let K(Π−) denote the canonical system of all eigen- and associated vectors corre-
sponding to eigenvalues from the left half-plane Π− = {λ : Reλ < 0}.
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Definition 2. Let λ0 be an eigenvalue of the operator pencil (1), where Reλ0 < 0.
Then, if x0, x1, ..., xm is a system of eigen- and associated vectors of the operator pencil
P (λ) corresponding to the eigenvalue λ0, then

un(t) = eλ0t

(
tn

n!
x0 +

tn−1

(n− 1)!
x1 + ...+ xn

)
, n = 0, 1, ...,m,

are called decreasing elementary solutions to the homogeneous equation P (d/dt)u(t) = 0.

Denote by L2((a, b);H) a Hilbert space of functions defined almost everywhere on
the interval (a, b) with values in H and the norm

∥f∥L2((a,b);H) =

(∫ b

a

∥f∥2dt

)1/2

<∞.

Following the monograph [10], let’s denote by

Wn
2 ((a, b);H) = {u : u(n) ∈ L2((a, b);H), Anu ∈ L2((a, b);H)}

a Hilbert space with norm

∥u∥Wn
2 ((a,b);H) =

(∥∥∥u(n)∥∥∥2
L2((a,b);H)

+ ∥Anu∥2L2((a,b);H)

)1/2

.

For (a, b) = R and (a, b) = R+, we use the notations Wn
2 (R;H) and Wn

2 (R+;H),
respectively.

Note that if ω ∈W 3
2 (R+;H) (see [10]), then it can be extended to the left half-plane

as the zero function over the entire real line, where

ω1(t) =

{
ω(t), t ≥ 0,
0, t ≤ 0,

(3)

belongs to the space W 3
2 (R;H).

Furthermore, we observe that if u ∈Wn
2 ((a, b);H), then

a) An−ju(j) ∈ L2((a, b);H) and
∥∥An−ju(j)

∥∥
L2((a,b);H)

≤ const∥u∥Wn
2 ((a,b);H),

j = 1, n− 1 (the theorem on intermediate derivatives);
b) for t0 ∈ [a, b] u(j)(t0) ∈ Hn−j−1/2(j = 0, n− 1) and ∥u(t0)∥n−j−1/2 ≤
≤ const∥u∥Wn

2 ((a,b);H), j = 0, n− 1 (the theorem on traces).

The paper proves the minimality of the system K(Π−) in the space H5/2 and the
system of decreasing elementary solutions in the space W 2

2 (R+;H) subject to additional
conditions imposed on the coefficients of the operator pencil P (λ).

It should be noted that M.V. Keldysh, in a well-known work [7], studied the issues
of completeness and minimality of all eigen- and associated vectors of a certain class
of polynomial operator pencils. In the work by M.G. Gasimov [6], an original method
was proposed, connecting the solvability of a boundary-value problem on the semi-axis
for a certain class of operator-differential equations with spectral problems for a part
of the eigen- and associated vectors of the corresponding polynomial operator pencil,
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corresponding to eigenvalues from the left half-plane. This work was further developed
in papers [11]-[18]. Here, it is worth mentioning the works [1]-[3], [5], where they studied
both the spectral properties of a quasi-elliptic operator pencil of the third order, different
from the one considered in this paper, and the issues of solvability of boundary-value
problems on the semi-axis for the operator-differential equation related to this pencil.

2. One Theorem for Functions from the Space
W 3

2 (R+;H)

As we noted, the function ω1(t) defined by equality (3), belongs to the space W 3
2 (R;H).

The following theorem holds.

Theorem 1. Let conditions 1) and 2) be satisfied. Then, under the fulfillment of con-
dition

∥B1∥+ ∥B2∥ <
(
27

4

)1/2

for every ω ∈W 3
2 (R+;H), the following inequality holds

∥P (d/dt)ω∥L2(R+;H) ≥ const∥ω∥W 3
2 (R+;H). (4)

Proof. Let ω(t) be any function from W 3
2 (R+;H). Then let’s denote

ψ(t) = P (d/dt)ω(t), t ∈ R+.

We can write that for t ∈ R, the equality holds

ψ1(t) = P (d/dt)ω1(t), t ∈ R.

Since ω1(t) = 0 when t ≤ 0, then ψ1(t) = 0 for t ≤ 0. After the Fourier transformation,
we have

ψ̂1(ξ) = P (iξ)ω̂1(ξ).

Let’s demonstrate that under the conditions of the theorem, the resolvent P−1(iξ)
exists. Indeed, since P−1

0 (iξ) exists for ξ ∈ R, then from the representation

P (iξ) = (E + P1(iξ)P
−1
0 (iξ))P0(iξ)

we obtain that P (iξ) is invertible when the operator E+P1(iξ)P
−1
0 (iξ) is invertible. We

have ∥∥P1(iξ)P
−1
0 (iξ)

∥∥ ≤ ∥B1∥ ·
∥∥(iξ)2AP−1

0 (iξ)
∥∥+ ∥B2∥ ·

∥∥iξ ·A2P−1
0 (iξ)

∥∥ . (5)

On the other hand, from the spectral decomposition of the operator A, it follows that

∥∥(iξ)2AP−1
0 (iξ)

∥∥ ≤ sup
µ∈σ(A)

∥∥∥ξ2µ(ξ2 + µ2)−3/2
∥∥∥ ≤

(
4

27

)1/2

. (6)
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Similarly, we have

∥∥iξA2P−1
0 (iξ)

∥∥ ≤ sup
µ∈σ(A)

∥∥∥ξµ2(ξ2 + µ2)−3/2
∥∥∥ ≤

(
4

27

)1/2

. (7)

Taking into account the inequalities (6) and (7) in the inequality (5), we obtain

∥∥P1(iξ)P
−1
0 (iξ)

∥∥ ≤
(

4

27

)1/2

(∥B1∥+ ∥B2∥) .

According to the theorem’s conditions,
∥∥P1(iξ)P

−1
0 (iξ)

∥∥ < 1 for ξ ∈ R.
So, the resolvent P−1(iξ) exists for ξ ∈ R and∥∥P−1(iξ)

∥∥ ≤ const
∥∥P−1

0 (iξ)
∥∥ ≤ const sup

µ∈σ(A)

(ξ2 + µ2)−3/2 ≤ constµ
−3/2
0 = const.

Therefore,
ω̂1(ξ) = P−1(iξ)ψ̂1(ξ).

Then it is obvious that

∥ω∥W 3
2 (R+;H) = ∥ω1∥W 3

2 (R;H) = ∥ω̂1 (ξ)∥W 3
2 (R;H) =

∥∥∥P−1ψ̂1(ξ)
∥∥∥
W 3

2 (R;H)
≤

≤ const
∥∥∥ψ̂1(ξ)

∥∥∥
L2(R;H)

= const∥ψ∥L2(R+;H) = const∥P (d/dt)ω∥L2(R+;H).

Thus, inequality (4) has been proven. ◀

3. On the Internal Compactness of the Space of
Regular Solutions to the Homogeneous Equation

Definition 3. If the function u(t) ∈W 3
2 (R+;H) satisfies the equation P (d/dt)u(t) = 0

almost everywhere in R+, then it is called a regular solution to the homogeneous equation.

The set of regular solutions to the homogeneous equation is denoted by

L(P ) =
{
u : u ∈W 3

2 (R+;H), P (d/dt)u(t) = 0
}
.

The space L(P ) is a complete subspace of W 3
2 (R+;H) according to conditions 1) and

2), and the theorem on intermediate derivatives.

Definition 4. Let 0 ≤ a < a′ < b′ < b and M > 0 are real numbers. If the set

LM =
{
u : u ∈ L(P ), ∥u∥W 2

2 ((a,b);H) ≤M
}

is compact with respect to the norm W 2
2 ((a

′, b′);H), then we say that the space of regular
solutions to the homogeneous equation is internally compact.
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Notice that the definition of internal compactness was first provided by P.D. Lax [8],
who applied the obtained results to elliptic equations in an infinite domain.

Let’s augment the space L(P ) with the norm ∥u∥W 2
2 (R+;H) and denote the resulting

space after augmentation by L̂M . Let’s show that L̂M is a compact set with respect to
the norm ∥u∥W 2

2 ((a
′,b′);H).

The following theorem holds.

Theorem 2. Assuming all the conditions of Theorem 1 are satisfied, then L̂M is a
compact set with respect to the norm ∥u∥W 2

2 ((a
′,b′);H).

Proof. From the conditions of the theorem, it follows that for any w ∈ W 3
2 (R+;H) the

inequality holds

∥P (d/dt)w(t)∥L2(R+;H) ≥ const∥w∥W 3
2 (R+;H). (8)

Let φ(t) be an infinitely differentiable scalar function defined on R, such that

φ(t) =

{
1, t ∈ (a′, b′),
0, t ∈ R\(a′, b′),

and u(t) be a regular solution to the equation P (d/dt)u(t) = 0. Then φ(t)u(t) ∈
W 3

2 (R;H) and
∣∣φ(k)(t)

∣∣ ≤ const, t ∈ R, k = 1, 2, 3.
From the inequality (8), it follows that

∥P (d/dt)φ(t)u(t)∥L2(R+;H) ≥ const∥φ(t)u(t)∥W 3
2 (R+;H) ≥ const∥φ(t)u(t)∥W 3

2 ((a,b);H) ≥

≥ const∥φ(t)u(t)∥W 3
2 ((a

′,b′);H). (9)

On the other hand, it is easy to see that

P (d/dt)φ(t)u(t) = φ(t)P (d/dt)u(t) +Q(φ, u),

where Q(φ, u) is some operator function depending on φ(t) and u (t).
Since P (d/dt)u(t) = 0, then

∥P (d/dt)φ(t)u(t)∥L2(R+;H) = ∥Q(φ, u)∥L2(R+;H).

Using the theorem on intermediate derivatives, it is easy to obtain that

∥Q(φ, u)∥L2(R+;H) ≤ const∥u∥W 2
2 ((a,b);H). (10)

Using (9) and (10), we have

∥u∥W 3
2 ((a

′,b′);H) ≤ const∥u∥W 2
2 ((a,b);H).

Since u ∈ L̂M , then ∥u∥W 3
2 ((a

′,b′);H) ≤ const. Because A−1 is a completely continuous

operator, then the embedding W 3
2 ((a

′, b′);H) ⊂ W 2
2 ((a

′, b′);H) is compact [6], i.e., L̂M

is compact with respect to the norm ∥u∥W 2
2 ((a

′,b′);H). ◀
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4. The Minimality of Decreasing Elementary
Solutions and the System K(Π−)

The following theorem holds.

Theorem 3. Let the conditions of Theorem 1 be satisfied. Then the system of decreasing
elementary solutions is minimal in the space W 3

2 (R+;H).

Proof. Recall that K(Π−) is the canonical system of eigen- and associated vectors cor-
responding to eigenvalues from the left half-plane. We have just proven that the space
of regular solutions to the homogeneous equation is internally compact. Then, according
to [8], the elementary decreasing solutions to the homogeneous equation will constitute
a system of eigen- and associated vectors for a completely continuous operator (see also
[16])

(Tu)(t) = u(t+ 1),

and its eigenvalues will be eλ0(Reλ0 < 0), and the eigen- and associated vectors will
be decreasing elementary solutions corresponding to the eigenvalue eλ0(Reλ0 < 0).
According to the results of [9], these vectors are minimal in W 2

2 (R+;H). Thus, the
operator T , acting in the space L̂M , is completely continuous. But, on the other hand,
W 3

2 (R+;H) ⊂ W 2
2 (R+;H) and elementary decreasing solutions belong to W 3

2 (R+;H).
Since the system of decreasing elementary solutions is minimal in W 2

2 (R+;H) and the
norm ∥u∥W 3

2 (R+;H) is stronger than the norm ∥u∥W 2
2 (R+;H), this system will be minimal

in W 3
2 (R+;H). Indeed, if there exists ε1 > 0 and for all coefficients cn∥∥∥∥∥∥un −

∑
k ̸=n

ckuk

∥∥∥∥∥∥
W 2

2 (R+;H)

> ε1,

then ∥∥∥∥∥∥un −
∑
k ̸=n

ckuk

∥∥∥∥∥∥
W 3

2 (R+;H)

≥ const

∥∥∥∥∥∥un −
∑
k ̸=n

ckuk

∥∥∥∥∥∥
W 2

2 (R+;H)

≥ ε1 · const = ε2.

◀

Theorem 4. Let conditions 1) and 2) hold, and suppose the inequality is satisfied

N2(R+) ∥B1∥+N1(R+) ∥B2∥ < 1,

where N1(R+) = (
√
5−1
8 )1/2, N2(R+) = β−1

0 , β0 is a positive root of the equation 4β3 −
11β2 − 20β − 1 = 0. Then the system K(Π−) is minimal in H5/2.

Proof. From the conditions of the Theorem, it follows that the conditions of Theorem 3
are satisfied. Indeed,

N1(R+) >

(
4

27

)1/2

, N2(R+) >

(
4

27

)1/2

.
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Then, according to Theorem 3, the system of decreasing elementary solutions is minimal
in W 3

2 (R+;H).
On the other hand, it follows from the results of [12] that when the conditions of

Theorem are satisfied, the boundary-value problem

P (d/dt)u(t) = 0, t ∈ R+,

u(0) = ζ, ζ ∈ H5/2,

has a unique regular solution, and

∥u∥W 3
2 (R+;H) ≤ const∥ζ∥5/2. (11)

If we consider the operator Γu(0) = u(t), acting from the space H5/2 to the space L̂M ,
then we will see that, from inequality (11) and the theorem on traces, it follows that the
operator Γ : H5/2 → L̂M satisfies the condition

const∥u(0)∥5/2 ≤ ∥Γu(0)∥W 3
2 (R+;H) ≤ const∥u(0)∥5/2.

From this, it follows that Γ−1 exists, is bounded, and therefore, it transforms the minimal
system into a minimal system. Consequently, K(Π−) is minimal in H5/2. ◀
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