ON THE MINIMALITY OF A PART OF EIGEN- AND ASSOCIATED VECTORS FOR A CLASS OF THIRD-ORDER QUASI-ELLIPTIC OPERATOR PENCILS

A.T. GAZILOVA, S.S. MIRZOEV*

Received: 17.11.2023 / Revised: 19.01.2024 / Accepted: 31.01.2024

In memory of M. G. Gasymov on his 85th birthday

Abstract

In the paper, we derive sufficient conditions on the coefficients of a thirdorder quasi-elliptic operator pencil, ensuring the minimality of its system of eigen- and associated vectors corresponding to eigenvalues from the left half-plane. Additionally, we prove a theorem on the minimality of decreasing elementary solutions to a homogeneous equation in a Sobolev-type space.

Keywords: operator pencil, eigen- and associated vectors, decreasing elementary solutions, regular solution, internal compactness, minimal system

Mathematics Subject Classification (2020): 34G10, 35J40, 35P10, 46C05, 47L75

1. Some Definitions and Facts from the Theory of Linear Operators

Let H be a separable Hilbert space and let A be a self-adjoint positive-definite operator on H with the domain of definition $\operatorname{Dom}(A)$. When $\gamma \geq 0$, let's denote the Hilbert space H_{γ} by introducing the scalar product $(x, y)_{\gamma}=\left(A^{\gamma} x, A^{\gamma} y\right)$ within the domain of definition of the operator A^{γ}, i.e., in $\operatorname{Dom}\left(A^{\gamma}\right)$. When $\gamma=0$, we assume that $(x, y)_{0}=(x, y)$ and $H_{0}=H$.

[^0]
Aydan T. Gazilova

Azerbaijan State Oil and Industry University, Baku, Azerbaijan
E-mail: aydan-9393@list.ru
Sabir S. Mirzoev
Baku State University, Baku, Azerbaijan;
Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: mirzoyevsabir@mail.ru

The notation $\sigma(\cdot)$ will be understood as the spectrum of the operator (\cdot).
Let's consider in the Hilbert space H a third-order quasi-elliptic operator pencil [4]:

$$
\begin{equation*}
P(\lambda)=(\lambda E-A)^{2}(\lambda+A)+\lambda^{2} A_{1}+\lambda A_{2}, \tag{1}
\end{equation*}
$$

where λ is the spectral parameter, E is the identity operator, and the remaining coefficients of the operator pencil $P(\lambda)$ satisfy the conditions:

1) A is a self-adjoint positive-definite operator with a completely continuous inverse operator A^{-1};
2) the operators $B_{1}=A_{1} A^{-1}$ and $B_{2}=A_{2} A^{-1}$ are bounded in H.

Let's assume that

$$
P_{0}(\lambda)=(\lambda E-A)^{2}(\lambda+A), \quad P_{1}(\lambda)=\lambda^{2} A_{1}+\lambda A_{2}
$$

Then

$$
P(\lambda)=P_{0}(\lambda)+P_{0}(\lambda)
$$

The operator pencil (1) can be represented in the form

$$
\begin{equation*}
P(\lambda)=(E+L(\lambda)) A^{3} \tag{2}
\end{equation*}
$$

where

$$
L(\lambda)=\lambda\left(B_{2}-E\right) A^{-1}+\lambda^{2}\left(B_{1}-E\right) A^{-2}+\lambda^{3} A^{-3}
$$

Since A^{-1} is a completely continuous operator, and the operators $B_{1}-E$ and $B_{2}-E$ are bounded operators, then $L(\lambda)$ is an operator function with completely continuous values. And since $L(0)=0$, then $E+L(\lambda)$ is invertible at the point $\lambda=0$, therefore, the operator pencil $E+L(\lambda)$, according to M.V. Keldysh's theorem [7], has a discrete spectrum with a unique limit point at infinity. From the representation (2), it follows that the operator pencil $P(\lambda)$ also possesses this property. Note that all points of the spectrum of the pencil $P(\lambda)$ are poles of the resolvent $P^{-1}(\lambda)$.
Definition 1. Let $x_{0} \neq 0, x_{0}, x_{1}, x_{2}, \ldots, x_{m} \in H_{5 / 2}$ satisfy the conditions

$$
\begin{aligned}
& P\left(\lambda_{0}\right) x_{0}=0 \\
& P\left(\lambda_{0}\right) x_{1}+\left.\frac{1}{1!} \frac{d P(\lambda)}{d \lambda}\right|_{\lambda=\lambda_{0}} x_{0}=0 \\
& \ldots \\
& P\left(\lambda_{0}\right) x_{m}+\left.\frac{1}{1!} \frac{d P(\lambda)}{d \lambda}\right|_{\lambda=\lambda_{0}} x_{m-1}+\left.\frac{1}{2!} \frac{d^{2} P(\lambda)}{d \lambda^{2}}\right|_{\lambda=\lambda_{0}} x_{m-2}+\left.\frac{1}{3!} \frac{d^{3} P(\lambda)}{d \lambda^{3}}\right|_{\lambda=\lambda_{0}} x_{m-3}=0 .
\end{aligned}
$$

Then λ_{0} is called an eigenvalue of the operator pencil $P(\lambda)$, and $x_{0}, x_{1}, \ldots, x_{m}$ are eigenand associated vectors of the operator pencil $P(\lambda)$ corresponding to the eigenvalue λ_{0}.

It is evident that a single eigenvalue λ_{0} may correspond to multiple sets of eigen- and associated vectors. In the future, we will assume that all sets of eigen- and associated vectors are canonical [7].

Let $K\left(\Pi_{-}\right)$denote the canonical system of all eigen- and associated vectors corresponding to eigenvalues from the left half-plane $\Pi_{-}=\{\lambda: \operatorname{Re} \lambda<0\}$.

Definition 2. Let λ_{0} be an eigenvalue of the operator pencil (1), where Re $\lambda_{0}<0$. Then, if $x_{0}, x_{1}, \ldots, x_{m}$ is a system of eigen- and associated vectors of the operator pencil $P(\lambda)$ corresponding to the eigenvalue λ_{0}, then

$$
u_{n}(t)=e^{\lambda_{0} t}\left(\frac{t^{n}}{n!} x_{0}+\frac{t^{n-1}}{(n-1)!} x_{1}+\ldots+x_{n}\right), \quad n=0,1, \ldots, m
$$

are called decreasing elementary solutions to the homogeneous equation $P(d / d t) u(t)=0$.
Denote by $L_{2}((a, b) ; H)$ a Hilbert space of functions defined almost everywhere on the interval (a, b) with values in H and the norm

$$
\|f\|_{L_{2}((a, b) ; H)}=\left(\int_{a}^{b}\|f\|^{2} d t\right)^{1 / 2}<\infty
$$

Following the monograph [10], let's denote by

$$
W_{2}^{n}((a, b) ; H)=\left\{u: u^{(n)} \in L_{2}((a, b) ; H), \quad A^{n} u \in L_{2}((a, b) ; H)\right\}
$$

a Hilbert space with norm

$$
\|u\|_{W_{2}^{n}((a, b) ; H)}=\left(\left\|u^{(n)}\right\|_{L_{2}((a, b) ; H)}^{2}+\left\|A^{n} u\right\|_{L_{2}((a, b) ; H)}^{2}\right)^{1 / 2}
$$

For $(a, b)=\mathbb{R}$ and $(a, b)=\mathbb{R}_{+}$, we use the notations $W_{2}^{n}(\mathbb{R} ; H)$ and $W_{2}^{n}\left(\mathbb{R}_{+} ; H\right)$, respectively.

Note that if $\omega \in W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$ (see [10]), then it can be extended to the left half-plane as the zero function over the entire real line, where

$$
\omega_{1}(t)= \begin{cases}\omega(t), & t \geq 0 \tag{3}\\ 0, & t \leq 0\end{cases}
$$

belongs to the space $W_{2}^{3}(\mathbb{R} ; H)$.
Furthermore, we observe that if $u \in W_{2}^{n}((a, b) ; H)$, then
a) $A^{n-j} u^{(j)} \in L_{2}((a, b) ; H)$ and $\left\|A^{n-j} u^{(j)}\right\|_{L_{2}((a, b) ; H)} \leq$ const $\|u\|_{W_{2}^{n}((a, b) ; H)}$,

$$
j=\overline{1, n-1} \text { (the theorem on intermediate derivatives); }
$$

b) for $t_{0} \in[a, b] u^{(j)}\left(t_{0}\right) \in H_{n-j-1 / 2}(j=\overline{0, n-1})$ and $\left\|u\left(t_{0}\right)\right\|_{n-j-1 / 2} \leq$ \leq const $\|u\|_{W_{2}^{n}((a, b) ; H)}, j=\overline{0, n-1}$ (the theorem on traces).
The paper proves the minimality of the system $K\left(\Pi_{-}\right)$in the space $H_{5 / 2}$ and the system of decreasing elementary solutions in the space $W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)$ subject to additional conditions imposed on the coefficients of the operator pencil $P(\lambda)$.

It should be noted that M.V. Keldysh, in a well-known work [7], studied the issues of completeness and minimality of all eigen- and associated vectors of a certain class of polynomial operator pencils. In the work by M.G. Gasimov [6], an original method was proposed, connecting the solvability of a boundary-value problem on the semi-axis for a certain class of operator-differential equations with spectral problems for a part of the eigen- and associated vectors of the corresponding polynomial operator pencil,
corresponding to eigenvalues from the left half-plane. This work was further developed in papers [11]-[18]. Here, it is worth mentioning the works [1]-[3], [5], where they studied both the spectral properties of a quasi-elliptic operator pencil of the third order, different from the one considered in this paper, and the issues of solvability of boundary-value problems on the semi-axis for the operator-differential equation related to this pencil.

2. One Theorem for Functions from the Space $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$

As we noted, the function $\omega_{1}(t)$ defined by equality (3), belongs to the space $W_{2}^{3}(\mathbb{R} ; H)$. The following theorem holds.

Theorem 1. Let conditions 1) and 2) be satisfied. Then, under the fulfilment of condition

$$
\left\|B_{1}\right\|+\left\|B_{2}\right\|<\left(\frac{27}{4}\right)^{1 / 2}
$$

for every $\omega \in W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$, the following inequality holds

$$
\begin{equation*}
\|P(d / d t) \omega\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)} \geq \mathrm{const}\|\omega\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \tag{4}
\end{equation*}
$$

Proof. Let $\omega(t)$ be any function from $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$. Then let's denote

$$
\psi(t)=P(d / d t) \omega(t), t \in \mathbb{R}_{+} .
$$

We can write that for $t \in \mathbb{R}$, the equality holds

$$
\psi_{1}(t)=P(d / d t) \omega_{1}(t), t \in \mathbb{R}
$$

Since $\omega_{1}(t)=0$ when $t \leq 0$, then $\psi_{1}(t)=0$ for $t \leq 0$. After the Fourier transformation, we have

$$
\hat{\psi}_{1}(\xi)=P(i \xi) \hat{\omega}_{1}(\xi)
$$

Let's demonstrate that under the conditions of the theorem, the resolvent $P^{-1}(i \xi)$ exists. Indeed, since $P_{0}^{-1}(i \xi)$ exists for $\xi \in R$, then from the representation

$$
P(i \xi)=\left(E+P_{1}(i \xi) P_{0}^{-1}(i \xi)\right) P_{0}(i \xi)
$$

we obtain that $P(i \xi)$ is invertible when the operator $E+P_{1}(i \xi) P_{0}^{-1}(i \xi)$ is invertible. We have

$$
\begin{equation*}
\left\|P_{1}(i \xi) P_{0}^{-1}(i \xi)\right\| \leq\left\|B_{1}\right\| \cdot\left\|(i \xi)^{2} A P_{0}^{-1}(i \xi)\right\|+\left\|B_{2}\right\| \cdot\left\|i \xi \cdot A^{2} P_{0}^{-1}(i \xi)\right\| \tag{5}
\end{equation*}
$$

On the other hand, from the spectral decomposition of the operator A, it follows that

$$
\begin{equation*}
\left\|(i \xi)^{2} A P_{0}^{-1}(i \xi)\right\| \leq \sup _{\mu \in \sigma(A)}\left\|\xi^{2} \mu\left(\xi^{2}+\mu^{2}\right)^{-3 / 2}\right\| \leq\left(\frac{4}{27}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|i \xi A^{2} P_{0}^{-1}(i \xi)\right\| \leq \sup _{\mu \in \sigma(A)}\left\|\xi \mu^{2}\left(\xi^{2}+\mu^{2}\right)^{-3 / 2}\right\| \leq\left(\frac{4}{27}\right)^{1 / 2} . \tag{7}
\end{equation*}
$$

Taking into account the inequalities (6) and (7) in the inequality (5), we obtain

$$
\left\|P_{1}(i \xi) P_{0}^{-1}(i \xi)\right\| \leq\left(\frac{4}{27}\right)^{1 / 2}\left(\left\|B_{1}\right\|+\left\|B_{2}\right\|\right)
$$

According to the theorem's conditions, $\left\|P_{1}(i \xi) P_{0}^{-1}(i \xi)\right\|<1$ for $\xi \in \mathbb{R}$.
So, the resolvent $P^{-1}(i \xi)$ exists for $\xi \in \mathbb{R}$ and

$$
\left\|P^{-1}(i \xi)\right\| \leq \text { const }\left\|P_{0}^{-1}(i \xi)\right\| \leq \text { const } \sup _{\mu \in \sigma(A)}\left(\xi^{2}+\mu^{2}\right)^{-3 / 2} \leq \text { const }_{0}^{-3 / 2}=\text { const } .
$$

Therefore,

$$
\hat{\omega}_{1}(\xi)=P^{-1}(i \xi) \hat{\psi}_{1}(\xi) .
$$

Then it is obvious that

$$
\begin{aligned}
& \|\omega\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)}=\left\|\omega_{1}\right\|_{W_{2}^{3}(\mathbb{R} ; H)}=\left\|\hat{\omega}_{1}(\xi)\right\|_{W_{2}^{3}(\mathbb{R} ; H)}=\left\|P^{-1} \hat{\psi}_{1}(\xi)\right\|_{W_{2}^{3}(\mathbb{R} ; H)} \leq \\
& \leq \mathrm{const}\left\|\hat{\psi}_{1}(\xi)\right\|_{L_{2}(\mathbb{R} ; H)}=\mathrm{const}\|\psi\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)}=\mathrm{const}\|P(d / d t) \omega\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)} .
\end{aligned}
$$

Thus, inequality (4) has been proven.

3. On the Internal Compactness of the Space of Regular Solutions to the Homogeneous Equation

Definition 3. If the function $u(t) \in W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$ satisfies the equation $P(d / d t) u(t)=0$ almost everywhere in \mathbb{R}_{+}, then it is called a regular solution to the homogeneous equation.

The set of regular solutions to the homogeneous equation is denoted by

$$
L(P)=\left\{u: u \in W_{2}^{3}\left(\mathbb{R}_{+} ; H\right), P(d / d t) u(t)=0\right\} .
$$

The space $L(P)$ is a complete subspace of $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$ according to conditions 1$)$ and 2), and the theorem on intermediate derivatives.

Definition 4. Let $0 \leq a<a^{\prime}<b^{\prime}<b$ and $M>0$ are real numbers. If the set

$$
L_{M}=\left\{u: u \in L(P),\|u\|_{W_{2}^{2}((a, b) ; H)} \leq M\right\}
$$

is compact with respect to the norm $W_{2}^{2}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)$, then we say that the space of regular solutions to the homogeneous equation is internally compact.

Notice that the definition of internal compactness was first provided by P.D. Lax [8], who applied the obtained results to elliptic equations in an infinite domain.

Let's augment the space $L(P)$ with the norm $\|u\|_{W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)}$ and denote the resulting space after augmentation by \hat{L}_{M}. Let's show that \hat{L}_{M} is a compact set with respect to the norm $\|u\|_{W_{2}^{2}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)}$.

The following theorem holds.
Theorem 2. Assuming all the conditions of Theorem 1 are satisfied, then \hat{L}_{M} is a compact set with respect to the norm $\|u\|_{W_{2}^{2}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)}$.

Proof. From the conditions of the theorem, it follows that for any $w \in W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$ the inequality holds

$$
\begin{equation*}
\|P(d / d t) w(t)\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)} \geq \mathrm{const}\|w\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \tag{8}
\end{equation*}
$$

Let $\varphi(t)$ be an infinitely differentiable scalar function defined on \mathbb{R}, such that

$$
\varphi(t)=\left\{\begin{array}{l}
1, t \in\left(a^{\prime}, b^{\prime}\right), \\
0, t \in \mathbb{R} \backslash\left(a^{\prime}, b^{\prime}\right),
\end{array}\right.
$$

and $u(t)$ be a regular solution to the equation $P(d / d t) u(t)=0$. Then $\varphi(t) u(t) \in$ $W_{2}^{3}(\mathbb{R} ; H)$ and $\left|\varphi^{(k)}(t)\right| \leq$ const $, t \in \mathbb{R}, k=1,2,3$.

From the inequality (8), it follows that

$$
\begin{align*}
\|P(d / d t) \varphi(t) u(t)\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)} & \geq \operatorname{const}\|\varphi(t) u(t)\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \geq \operatorname{const}\|\varphi(t) u(t)\|_{W_{2}^{3}((a, b) ; H)} \geq \\
& \geq \mathrm{const}\|\varphi(t) u(t)\|_{W_{2}^{3}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)} \tag{9}
\end{align*}
$$

On the other hand, it is easy to see that

$$
P(d / d t) \varphi(t) u(t)=\varphi(t) P(d / d t) u(t)+Q(\varphi, u)
$$

where $Q(\varphi, u)$ is some operator function depending on $\varphi(t)$ and $u(t)$.
Since $P(d / d t) u(t)=0$, then

$$
\|P(d / d t) \varphi(t) u(t)\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)}=\|Q(\varphi, u)\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)}
$$

Using the theorem on intermediate derivatives, it is easy to obtain that

$$
\begin{equation*}
\|Q(\varphi, u)\|_{L_{2}\left(\mathbb{R}_{+} ; H\right)} \leq \mathrm{const}\|u\|_{W_{2}^{2}((a, b) ; H)} \tag{10}
\end{equation*}
$$

Using (9) and (10), we have

$$
\|u\|_{W_{2}^{3}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)} \leq \mathrm{const}\|u\|_{W_{2}^{2}((a, b) ; H)}
$$

Since $u \in \hat{L}_{M}$, then $\|u\|_{W_{2}^{3}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)} \leq$ const. Because A^{-1} is a completely continuous operator, then the embedding $W_{2}^{3}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right) \subset W_{2}^{2}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)$ is compact [6], i.e., \hat{L}_{M} is compact with respect to the norm $\|u\|_{W_{2}^{2}\left(\left(a^{\prime}, b^{\prime}\right) ; H\right)}$.

4. The Minimality of Decreasing Elementary Solutions and the System $K\left(\Pi_{-}\right)$

The following theorem holds.
Theorem 3. Let the conditions of Theorem 1 be satisfied. Then the system of decreasing elementary solutions is minimal in the space $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$.

Proof. Recall that $K\left(\Pi_{-}\right)$is the canonical system of eigen- and associated vectors corresponding to eigenvalues from the left half-plane. We have just proven that the space of regular solutions to the homogeneous equation is internally compact. Then, according to [8], the elementary decreasing solutions to the homogeneous equation will constitute a system of eigen- and associated vectors for a completely continuous operator (see also [16])

$$
(T u)(t)=u(t+1),
$$

and its eigenvalues will be $e^{\lambda_{0}}\left(\operatorname{Re} \lambda_{0}<0\right)$, and the eigen- and associated vectors will be decreasing elementary solutions corresponding to the eigenvalue $e^{\lambda_{0}}\left(\operatorname{Re} \lambda_{0}<0\right)$. According to the results of [9], these vectors are minimal in $W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)$. Thus, the operator T, acting in the space \hat{L}_{M}, is completely continuous. But, on the other hand, $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right) \subset W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)$ and elementary decreasing solutions belong to $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$. Since the system of decreasing elementary solutions is minimal in $W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)$ and the norm $\|u\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)}$ is stronger than the norm $\|u\|_{W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)}$, this system will be minimal in $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$. Indeed, if there exists $\varepsilon_{1}>0$ and for all coefficients c_{n}

$$
\left\|u_{n}-\sum_{k \neq n} c_{k} u_{k}\right\|_{W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)}>\varepsilon_{1}
$$

then

$$
\left\|u_{n}-\sum_{k \neq n} c_{k} u_{k}\right\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \geq \text { const }\left\|u_{n}-\sum_{k \neq n} c_{k} u_{k}\right\|_{W_{2}^{2}\left(\mathbb{R}_{+} ; H\right)} \geq \varepsilon_{1} \cdot \text { const }=\varepsilon_{2}
$$

Theorem 4. Let conditions 1) and 2) hold, and suppose the inequality is satisfied

$$
N_{2}\left(\mathbb{R}_{+}\right)\left\|B_{1}\right\|+N_{1}\left(\mathbb{R}_{+}\right)\left\|B_{2}\right\|<1
$$

where $N_{1}\left(\mathbb{R}_{+}\right)=\left(\frac{\sqrt{5}-1}{8}\right)^{1 / 2}, N_{2}\left(\mathbb{R}_{+}\right)=\beta_{0}^{-1}, \beta_{0}$ is a positive root of the equation $4 \beta^{3}-$ $11 \beta^{2}-20 \beta-1=0$. Then the system $K\left(\Pi_{-}\right)$is minimal in $H_{5 / 2}$.

Proof. From the conditions of the Theorem, it follows that the conditions of Theorem 3 are satisfied. Indeed,

$$
N_{1}\left(\mathbb{R}_{+}\right)>\left(\frac{4}{27}\right)^{1 / 2}, \quad N_{2}\left(\mathbb{R}_{+}\right)>\left(\frac{4}{27}\right)^{1 / 2}
$$

Then, according to Theorem 3, the system of decreasing elementary solutions is minimal in $W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)$.

On the other hand, it follows from the results of [12] that when the conditions of Theorem are satisfied, the boundary-value problem

$$
\begin{gathered}
P(d / d t) u(t)=0, \quad t \in \mathbb{R}_{+}, \\
u(0)=\zeta, \quad \zeta \in H_{5 / 2},
\end{gathered}
$$

has a unique regular solution, and

$$
\begin{equation*}
\|u\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \leq \text { const }\|\zeta\|_{5 / 2} \tag{11}
\end{equation*}
$$

If we consider the operator $\Gamma u(0)=u(t)$, acting from the space $H_{5 / 2}$ to the space \hat{L}_{M}, then we will see that, from inequality (11) and the theorem on traces, it follows that the operator $\Gamma: H_{5 / 2} \rightarrow \hat{L}_{M}$ satisfies the condition

$$
\text { const }\|u(0)\|_{5 / 2} \leq\|\Gamma u(0)\|_{W_{2}^{3}\left(\mathbb{R}_{+} ; H\right)} \leq \text { const }\|u(0)\|_{5 / 2} .
$$

From this, it follows that Γ^{-1} exists, is bounded, and therefore, it transforms the minimal system into a minimal system. Consequently, $K\left(\Pi_{-}\right)$is minimal in $H_{5 / 2}$.

References

1. Aliev A.R., Elbably A.L. On the solvability in a weight space of a third-order operatordifferential equation with multiple characteristic. Dokl. Math., 2012, 85 (2), pp. 233235.
2. Aliev A.R., Elbably A.L. Well-posedness of a boundary value problem for a class of third-order operator-differential equations. Bound. Value Probl., 2013, 2013 (140), pp. 1-15.
3. Aliev A.R., Elbably A.L. Completeness of derivative chains for polynomial operator pencil of third order with multiple characteristics. Azerb. J. Math., 2014, 4 (2), pp. 3-9.
4. Dubinskii Yu.A. On some differential-operator equations of arbitrary order. Math. USSR-Sb., 1973, 19 (1), pp. 1-21.
5. Elbably A.L. On the completeness of a system of elementary solutions for an operatordifferential equation. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics and Mechanics, 2012, 32 (4), pp. 35-42.
6. Gasymov M.G. On the theory of polynomial operator pencils. Dokl. Akad. Nauk SSSR, 1971, 199 (4), pp. 747-750 (in Russian).
7. Keldysh M.V. On the completeness of the eigenfunctions of some classes of nonselfadjoint linear operators. Russ. Math. Surv., 1971, 26 (4), pp. 15-44.
8. Lax P.D. A Phragmén-Lindelxöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations. Comm. Pure Appl. Math., 1957, 10 (3), pp. 361-389.
9. Lidskii V.B. Summability of series in terms of the principal vectors of non-selfadjoint operators. Trudy Moskov. Mat. Obšč., 1962, 11, pp. 3-35 (in Russian).
10. Lions J.L., Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Dunod, Paris, 1968; Mir, Moscow, 1971; Springer, Berlin, 1972.
11. Mirzoev S.S. Multiple completeness of root vectors of polynomial operator pencils corresponding to boundary-value problems on the semiaxis. Funct. Anal. Appl., 1983, 17 (2), pp. 151-153.
12. Mirzoev S.S., Gazilova A.T. On the completeness of a part of root vectors for a class of third-order quasi-elliptic operator pencils. Math. Notes, 2019, 105 (5), pp. 798-801.
13. Mirzoev S.S., Salimov M.Yu. Completeness of elementary solutions to a class of second order operator-differential equations. Siberian Math. J., 2010, 51 (4), pp. 648659.
14. Radzievskii G.V. A method of proof of the minimality and the basis property of a part of the root vectors. Funct. Anal. Appl., 1983, 17 (1), pp. 18-23.
15. Radzievskii G.V. Minimality, basis property and completeness of a subset of the root vectors of a quadratic operator pencil. Dokl. Akad. Nauk SSSR, 1985, 283 (1), pp. 53-57 (in Russian).
16. Shkalikov A.A. Elliptic equations in a Hilbert space and related spectral problems. Trudy Sem. Petrovsk., 1989, (14), pp. 140-224 (in Russian).
17. Vlasov V.V. The minimality of derived chains. Russ. Math. Surv., 1982, 37 (5), pp. 198-199.
18. Vlasov V.V. Multiple minimality of a part of a system of root vectors of M. V. Keldysh's pencils. Dokl. Akad. Nauk SSSR, 1982, 263 (6), pp. 1289-1293 (in Russian).

[^0]: * Corresponding author.

