CONVERGENCE OF ITERATES OF PROBABILITY MEASURES ON LOCALLY COMPACT GROUPS

H. MUSTAFAYEV

Received: 07.11.2023 / Revised: 08.01.2024 / Accepted: 23.01.2024

In memory of M. G. Gasymov on his 85th birthday

Abstract. Let G be a locally compact group with the left Haar measure m_G . For a subset S of G, by [S] we denote the closed subgroup of G generated by S. Let μ be a probability measure on G and $H := [\operatorname{supp}(\tilde{\mu} * \mu)]$, where $d\tilde{\mu}(g) := d\mu(g^{-1})$. We show that:

 $a) \ {\it If} \ G \ is \ a \ compact \ group, \ then$

$$w^* - \lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n = \overline{m}_H,$$

where $\overline{m}_H(E) = m_H(E \cap H)$ for every Borel subset E of G. b) If H is not compact, then

$$w^* - \lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n = 0.$$

Some related problems are also discussed.

Keywords: locally compact group, probability measure, weak* convergence

Mathematics Subject Classification (2020): 46HXX, 43A10, 43A20, 43A25

1. Introduction

Let G be a locally compact group with the left Haar measure m_G (in the case when G is compact, m_G will denote normalized Haar measure on G) and let M(G) be the convolution measure algebra of G. As usual, $C_0(G)$ will denote the space of all complex valued continuous functions on G vanishing at infinity. Since $C_0(G)^* = M(G)$, the

Azerbaijan State Oil and Industry University, Baku, Azerbaijan;

Heybetkulu Mustafayev

Center for Mathematics and Its Applications at Khazar University, Baku, Azerbaijan

E-mail: mustafayev.heybatqulu@asoiu.edu.az, hsmustafayev@yahoo.com

space M(G) carries the weak^{*} topology $\sigma(M(G), C_0(G))$. In the following, the w^{*}-topology on M(G) always means this topology. Thus, a sequence $\{\mu_n\}_{n\in\mathbb{N}}$ in M(G) weak^{*} converges to $\mu \in M(G)$ or w^{*}- $\lim_{n \to \infty} \mu_n = \mu$ if:

$$\lim_{n \to \infty} \int_{G} f d\mu_{n} = \int_{G} f d\mu, \quad \forall f \in C_{0}(G).$$

For a subset S of G, by [S] we will denote the closed subgroup of G generated by S. A probability measure μ on G is said to be *adapted* if $[\text{supp}\mu] = G$. Also, a probability measure μ on G is said to be *strictly aperiodic* if the support of μ is not contained in a proper closed left cosets gH ($H \neq G$, $g \in G \setminus H$) of G.

Recall that the convolution product $\mu * \nu$ of two measures $\mu, \nu \in M(G)$ is defined by

$$(\mu * \nu) (B) = \int_{G} \mu (Bg^{-1}) d\nu (g) \text{ for every Borel subset } B \text{ of } G.$$

For an arbitrary $n \in \mathbb{N}$, by μ^n we will denote *n*-th convolution power of $\mu \in M(G)$, where $\mu^0 := \delta_e$ is the Dirac measure concentrated at the unit element *e* of *G*. A classical Kawada-Itô theorem [6, Theorem 7] asserts that if μ is an adapted measure on a compact metrisable group *G*, then the sequence of probability measures $\left\{\frac{1}{n}\sum_{i=0}^{n-1}\mu^i\right\}_{n\in\mathbb{N}}$ weak* converges to the Haar measure on *G* (see also, [5, Theorem 3.2.4]). If μ is an adapted and strictly aperiodic measure on a compact metrisable group *G*, then w*- $\lim_{n\to\infty}\mu^n = 0$ [9, Theorem 2]. In [2, Théorème 8], it was proved that if μ is a strictly aperiodic measure on a non-compact locally compact group *G*, then w*- $\lim_{n\to\infty}\mu^n = 0$ (for related results see also, [1], [5], [10], [11]).

In this note, we present some results of Kawada-Itô type.

2. The Sequence $\{(\widetilde{\mu} * \mu)^n\}_{n \in \mathbb{N}}$

In this section, we study weak^{*} convergence of the sequence $\{(\tilde{\mu} * \mu)^n\}_{n \in \mathbb{N}}$ for the probability measure μ on a locally compact group G.

As is well known, equipped with the involution given by $d\tilde{\mu}(g) = \overline{d\mu(g^{-1})}$, the algebra M(G) becomes a Banach *-algebra. If μ is a probability measure on a locally compact group G, then as $\operatorname{supp} \tilde{\mu} = (\operatorname{supp} \mu)^{-1}$, we have

$$\operatorname{supp}\left(\widetilde{\mu}*\mu\right) = \overline{\left\{\left(\operatorname{supp}\mu\right)^{-1}\cdot\left(\operatorname{supp}\mu\right)\right\}}.$$

If H is a closed subgroup of the locally compact group G, then \overline{m}_H may be regarded as a measure on G by putting $\overline{m}_H(E) = m_H(E \cap H)$ for every Borel subset E of G. The following two theorems are the main results of this note. **Theorem 1.** For an arbitrary probability measure μ on a compact (not necessarily metrisable) group G, we have

$$w^* - \lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n = m_H,$$

where $H = [\operatorname{supp} (\widetilde{\mu} * \mu)].$

Theorem 2. Let μ be a probability measure on a locally compact group G. If $[\operatorname{supp}(\widetilde{\mu} * \mu)]$ is not compact, then

$$w^* - \lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n = 0.$$

For the proof of Theorems 1 and 2, we need some preliminary results.

Let \mathcal{H} be a complex Hilbert space and let $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . If T is a contraction on \mathcal{H} , then by the Mean Ergodic Theorem [7, Chapter 2],

$$P_T x := \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} T^k x \text{ in norm, for every } x \in \mathcal{H}$$

where P_T is a orthogonal projection onto ker (T - I). The operator P_T will be called *mean ergodic projection associated with T*. Moreover, we have

$$\mathcal{H} = \ker \left(T - I \right) \oplus \overline{\left(T - I \right) \mathcal{H}} \tag{1}$$

and $TP_T = P_T T = P_T$.

The following result is an immediate consequence of the identity (1).

Proposition 1. Let T be a contraction on a Hilbert space \mathcal{H} and assume that $||T^{n+1}x - T^nx|| \to 0$ for all $x \in \mathcal{H}$. Then,

$$\lim_{n\to\infty} T^n x = P_T x \quad in \ norm \ for \ every \ x \in \mathcal{H},$$

where P_T is the mean ergodic projection associated with T.

Recall that an operator $T \in B(\mathcal{H})$ is said to be *positive* if $\langle Tx, x \rangle \geq 0$ for all $x \in \mathcal{H}$. For example, T^*T is a positive operator for any $T \in B(\mathcal{H})$. Now, let T be a positive contraction. Since $\lim_{n \to \infty} |\lambda^{n+1} - \lambda^n| = 0$ for all $0 \leq \lambda \leq 1$, by the Spectral Theorem, we have $\lim_{n \to \infty} ||T^{n+1} - T^n|| = 0$.

Even more can be deduced.

Proposition 2. If T is a positive contraction on a Hilbert space, then

$$\overline{\lim_{n \to \infty}} n \left\| T^{n+1} - T^n \right\| \le \frac{1}{e}.$$

Proof. Notice that the spectrum of T is in [0, 1]. Since

$$\max_{\lambda \in [0,1]} |\lambda^{n+1} - \lambda^n| = \frac{n^n}{(n+1)^{n+1}}$$

by the Spectral Theorem,

$$||T^{n+1} - T^n|| \le \max_{\lambda \in [0,1]} |\lambda^{n+1} - \lambda^n| = \frac{n^n}{(n+1)^{n+1}} = \frac{1}{n} \frac{n}{n+1} \frac{1}{\left(1 + \frac{1}{n}\right)^n}.$$

It follows that

$$\overline{\lim_{n \to \infty}} n \left\| T^{n+1} - T^n \right\| \le \frac{1}{e}.$$

◄

As a consequence of Propositions 1, we have the following.

Corollary 1. If T is a contraction on a Hilbert space, then

$$\lim_{n \to \infty} (T^*T)^n = P \quad in \ the \ strong \ operator \ topology,$$

where P is an orthogonal projection onto ker $(T^*T - I)$.

Let G be a locally compact group and let π be a strongly continuous unitary representations of G on a Hilbert space \mathcal{H}_{π} . For an arbitrary $\mu \in M(G)$, we can define $\hat{\mu}(\pi) \in B(\mathcal{H}_{\pi})$, by

$$\langle \hat{\mu}(\pi) x, y \rangle = \int_{G} \langle \pi(g) x, y \rangle d\mu(g) \quad (x, y \in \mathcal{H}_{\pi}).$$

The map $\mu \to \hat{\mu}(\pi)$ is multiplicative, *-linear; $\hat{\mu}(\pi)^* = \hat{\mu}(\pi)$, and contractive; $\|\hat{\mu}(\pi)\| \leq \|\mu\|_1$, where $\|\mu\|_1$ is the total variation norm of μ . By \hat{G} we will denote the set of all equivalence classes of irreducible strongly continuous unitary representations of G. The function $\pi \to \hat{\mu}(\pi)$ ($\pi \in \hat{G}$) is called *Fourier-Stieltjes transform* of the measure μ . If $\hat{\mu}(\pi) = 0$ for all $\pi \in \hat{G}$, then $\mu = 0$ (for instance, see [4, § 18]).

We will assume that the dual object \widehat{G} of G is equipped with the Fell topology. Recall that a point $\pi_0 \in \widehat{G}$ is a *limit point* of $M \subset \widehat{G}$ in the Fell topology, if the matrix function $g \to \langle \pi_0(g) x_0, x_0 \rangle$ $(x_0 \in \mathcal{H}_{\pi_0})$ can be uniformly approximated on every compact $K \subset G$ by the matrix functions $g \to \langle \pi(g) x, x \rangle$ $(\pi \in M, x \in \mathcal{H}_{\pi})$. The set $M \subset \widehat{G}$ is said to be *closed* if it contains all of its limit points. It is well known that if G is compact, then every $\pi \in \widehat{G}$ is finite dimensional. Also, we know that if G is compact (resp. compact and metrisable) then \widehat{G} is discrete (resp. countable). These facts are consequences of the Peter-Weyl theory [8, Chapter 4]. Also, recall that σ -compact locally compact group Gis metrisable if and only if \widehat{G} is separable (for instance see, [4]).

The following result was proved in [3, Proposition 2.1].

Lemma. Let μ be a probability measure on a locally compact group G and let π be a strongly continuous unitary representations of G on a Hilbert space \mathcal{H}_{π} . Then, we have

$$\ker\left[\widehat{\mu}\left(\pi\right) - I_{\pi}\right] = \left\{x \in \mathcal{H}_{\pi} : \pi\left(g\right)x = x, \ \forall g \in [\mathrm{supp}\mu]\right\}$$

where I_{π} is the identity operator on \mathcal{H}_{π} .

Now, we are in a position to prove Theorem 1.

Proof. (Proof of Theorem 1) Let $\pi \in \widehat{G}$ and let \mathcal{H}_{π} be the representation space of π . Since G is a compact group, \mathcal{H}_{π} is finite dimensional. Let dim $\mathcal{H}_{\pi} := n_{\pi}$ and let $\left\{ e_{\pi}^{(1)}, ..., e_{\pi}^{(n_{\pi})} \right\}$ be the basic vectors in \mathcal{H}_{π} . Denote by $f_{i,j}^{\pi}$ the matrix functions of π , where

$$f_{i,j}^{\pi}(g) = \langle \pi(g) e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \quad (i, j = 1, ..., n_{\pi}) \,.$$

Then, we can write

$$\langle \left(\widetilde{\mu}*\mu\right)^{n}, f_{i,j}^{\pi} \rangle = \int_{G} \langle \pi\left(g\right) e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle d\left(\widetilde{\mu}*\mu\right)^{n} = \langle \left[\widehat{\mu}\left(\pi\right)^{*}\widehat{\mu}\left(\pi\right)\right]^{n} e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \quad (\forall n \in \mathbb{N}).$$

By Corollary 1,

$$\left\langle \left[\widehat{\mu} \left(\pi \right)^{*} \widehat{\mu} \left(\pi \right) \right]^{n} e_{\pi}^{(i)}, e_{\pi}^{(j)} \right\rangle \to \left\langle P_{\mu}^{\pi} e_{\pi}^{(i)}, e_{\pi}^{(j)} \right\rangle \quad (n \to \infty) \,,$$

where P^{π}_{μ} is an orthogonal projection onto ker $[\widehat{\mu}(\pi)^* \widehat{\mu}(\pi) - I_{\pi}]$. So we have

$$\langle \left(\widetilde{\mu} * \mu\right)^n, f_{i,j}^{\pi} \rangle \to \langle P_{\mu}^{\pi} e_{\pi}^{(i)}, e_{\pi}^{(j)} \rangle \quad (n \to \infty)$$

By the Peter-Weyl C-Theorem [8, Chapter 4], the system of matrix functions

$$\left\{f_{i,j}^{\pi}:\pi\in\widehat{G},\ i,j=1,...,n_{\pi}\right\}$$

is linearly dense in C(G). Consequently, the limit

$$\lim_{n\to\infty} \left\langle \left(\widetilde{\mu}\ast\mu\right)^n,f\right\rangle \;\; \text{exists for all } f\in C\left(G\right)$$

Since

$$f \to \lim_{n \to \infty} \langle \left(\widetilde{\mu} * \mu \right)^n, f \rangle$$

is a bounded linear functional on C(G), there exists a measure $\theta_{\mu} \in M(G)$ such that

$$\lim_{n \to \infty} \left\langle \left(\widetilde{\mu} * \mu \right)^n, f \right\rangle = \left\langle \theta_{\mu}, f \right\rangle, \quad \forall f \in C \left(G \right).$$

So we have

$$w^* - \lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n = \theta_{\mu}.$$

Now, let $H := [\operatorname{supp}(\tilde{\mu} * \mu)]$. It remains to show that $\theta_{\mu} = m_H$. Let us see first that θ_{μ} is an idempotent measure. Since the left (or right) multiplication on M(G) is separately continuous, we have $(\tilde{\mu} * \mu) * \theta_{\mu} = \theta_{\mu}$, which implies

$$\left(\widetilde{\mu} * \mu\right)^n * \theta_\mu = \theta_\mu, \quad \forall n \in \mathbb{N}.$$

As $(\tilde{\mu} * \mu)^n \to \theta_{\mu}$ in the w*-topology, we have $\theta_{\mu}^2 = \theta_{\mu}$. Hence, θ_{μ} is an idempotent measure. Notice also that

$$\widehat{\theta_{\mu}}(\pi) = P_{\mu}^{\pi}, \ \forall \pi \in \widehat{G}.$$

Further, since $\widehat{m_{H}}(\pi)$ is an orthogonal projection, by Lemma, we can write

$$\widehat{m_{H}}(\pi) \mathcal{H}_{\pi} = \ker \left[\widehat{m_{H}}(\pi) - I_{\pi} \right] = \left\{ x \in \mathcal{H}_{\pi} : \pi \left(g \right) x = x, \ \forall g \in H \right\}$$

For the same reasons,

$$\widehat{\theta_{\mu}}(\pi) \mathcal{H}_{\pi} = P_{\mu}^{\pi} \mathcal{H}_{\pi} = \ker \left[\widehat{\mu}(\pi)^{*} \widehat{\mu}(\pi) - I_{\pi}\right] = \left\{ x \in \mathcal{H}_{\pi} : \pi\left(g\right) x = x, \ \forall g \in H \right\}.$$

Thus we have $\widehat{\theta_{\mu}}(\pi) = \widehat{m_{H}}(\pi)$ for all $\pi \in \widehat{G}$. It follows that $\theta_{\mu} = m_{H}$.

Let μ be a probability measure on a compact metrisable group G. A Borel subset E of G is said to be a *continuity set* of μ if $\mu(\partial E) = 0$, where ∂E denotes topological boundary of E. By the well known Portmanteau theorem, the sequence $\{\mu_n\}_{n \in \mathbb{N}}$ of the probability measures on G, weak^{*} converges to the measure μ if and only if $\mu_n(E) \to \mu(E)$ for any continuity set E of μ .

Corollary 2. Let μ be a probability measure on a compact metrisable group G with $[\operatorname{supp}(\widetilde{\mu} * \mu)] = G$. The following assertions hold:

(a) For an arbitrary continuity set E of m_G ,

$$\lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n (E) = m_G (E) \,.$$

(b) Let ν be a probability measure on G and assume that for an arbitrary continuity set E of ν ,

$$\lim_{n \to \infty} \left(\widetilde{\mu} * \mu \right)^n (E) = \nu (E)$$

Then, $\nu = m_G$.

Let G be a locally compact group. For an arbitrary $f \in L^{p}(G)$ $(1 \le p < \infty)$, we put

$$f^{\vee}(g) := f\left(g^{-1}\right) \text{ and } \widetilde{f}(g) := \overline{f\left(g^{-1}\right)}.$$

Notice that for every $u, v \in L^{2}(G)$, the function $u * \widetilde{v}$ is in $C_{0}(G)$ and

$$\langle \mu, u * \widetilde{\upsilon} \rangle = \langle \mu * \overline{\upsilon}, \overline{u} \rangle, \ \forall \mu \in M(G).$$

It follows that the set $\{u * \tilde{v} : u, v \in L^2(G)\}$ is linearly dense in $C_0(G)$. Notice also that if $f \in L^p(G)$ $(1 and <math>h \in L^q(G)$ (1/p + 1/q = 1), then $h * f^{\vee} \in C_0(G)$ and

$$\langle \mu, h * f^{\vee} \rangle = \langle \mu * f, h \rangle, \quad \forall \mu \in M(G)$$

It follows that $\{h * f^{\vee} : h \in L^q(G), f \in L^p(G)\}$ is linearly dense in $C_0(G)$.

Let π be the left regular representation of G on $L^{p}(G)$ $(1 \leq p < \infty)$, where

$$\pi(g) f(s) = f(g^{-1}s) := f_g(s)$$

Then, π is continuous and $\hat{\mu}(\pi) f = \mu * f$ for every $\mu \in M(G)$. We will denote this operator by $\lambda_p(\mu)$, the left convolution operator. The left convolution operator $\lambda_p(\mu) f := \mu * f$ is a bounded linear operator on $L^p(G)$, that is,

$$\|\lambda_p(\mu) f\|_p \le \|\mu\|_1 \|f\|_p$$
 and $\|\lambda_1(\mu)\|_1 = \|\mu\|_1$.

Proof. (Proof of Theorem 2) It suffices to show that

$$\langle \left(\widetilde{\mu} * \mu\right)^n, u * \widetilde{v} \rangle \to 0 \text{ for all } u, v \in L^2(G)$$

For this, we must show that

$$\langle (\widetilde{\mu} * \mu)^n * \overline{v}, \overline{u} \rangle \to 0.$$

Since $\lambda_2(\widetilde{\mu}) = \lambda_2(\mu)^*$, by Lemma,

$$\{ f \in L^{2}(G) : \lambda_{2}(\mu)^{*} \lambda_{2}(\mu) f = f \} = \{ f \in L^{2}(G) : \lambda_{2}(\tilde{\mu} * \mu) f = f \}$$

= $\{ f \in L^{2}(G) : f_{s} = f, \forall s \in [\text{supp}(\tilde{\mu} * \mu)] \}$

Since $[\text{supp}(\tilde{\mu} * \mu)]$ is not compact, from the identity $f_s = f$ for all $s \in [\text{supp}\mu]$, we have f = 0 (a.e.). Hence,

$$\ker \left[\lambda_2\left(\mu\right)^* \lambda_2\left(\mu\right) - I\right] = 0.$$

By Corollary 1,

 $\left[\lambda_{2}\left(\mu\right)^{*}\lambda_{2}\left(\mu\right)\right]^{n} \to 0$ in the strong operator topology.

Now if $u, v \in L^{2}(G)$, then we get

$$\langle \left(\widetilde{\mu} * \mu\right)^n * \overline{v}, \overline{u} \rangle = \langle \left[\lambda_2 \left(\mu\right)^* \lambda_2 \left(\mu\right)\right]^n \overline{v}, \overline{u} \rangle \to 0.$$

3. Norm Convergence

In this section, we present some results concerning norm convergence of the sequence $\{(\tilde{\mu} * \mu)^n * f\}_{n \in \mathbb{N}}$ in $L^p(G)$ spaces.

Proposition 3. Let μ be a probability measure on a locally compact group G and let $f \in L^p(G)$ (1 . The following assertions hold:

(a) If G is compact and $[supp (\tilde{\mu} * \mu)] = G$, then

$$(\widetilde{\mu} * \mu)^n * f \to \left(\int_G f dm_G\right) \mathbf{1} \quad in \ L^p \text{-norm},$$

where $\mathbf{1}$ is the identity one function on G.

(b) If $[supp (\tilde{\mu} * \mu)]$ is not compact, then

$$(\widetilde{\mu} * \mu)^n * f \to 0$$
 in L^p -norm.

Proof. If $\theta := \tilde{\mu} * \mu$, then by Corollary 1, $\theta^n * f \to u$ in the L^p -norm for some $u \in L^p(G)$. On the other hand, by Theorem 1,

$$\mathbf{w}^* - \lim_{n \to \infty} \theta^n = m_G.$$

If $v \in L^{q}(G)$ (1/p + 1/q = 1), then as $v^{\vee} * f \in C(G)$, we can write

$$\langle u, v \rangle = \lim_{n \to \infty} \langle \theta^n * f, v \rangle = \langle \theta^n, v^{\vee} * f \rangle = \langle m_G, v^{\vee} * f \rangle = \langle m_G * f, v \rangle.$$

So we have

$$u = m_G * f = \int_G f dm_G$$

If $[\text{supp}(\widetilde{\mu} * \mu)]$ is not compact, then by Theorem 2,

$$\mathbf{w}^*\text{-}\lim_{n\to\infty}\theta^n=0.$$

For an arbitrary $v \in L^{q}(G)$ (1/p + 1/q = 1), since $v * f^{\vee} \in C_{0}(G)$, we get

$$\langle u,v\rangle = \lim_{n\to\infty} \langle \theta^n*f,v\rangle = \lim_{n\to\infty} \langle \theta^n,v*f^\vee\rangle = 0.$$

Hence, u = 0.

Next, we have the following.

Proposition 4. Let μ be a probability measure on a compact group G. If $[\text{supp}(\tilde{\mu} * \mu)] = G$, then for an arbitrary $f \in C(G)$,

$$(\widetilde{\mu} * \mu)^n * f \to \left(\int_G f dm_G\right) \mathbf{1}$$
 uniformly on G.

For the proof, we need some preliminary results. Let χ_{π} denote the character of $\pi \in \widehat{G}$;

$$\chi_{\pi}(g) = \sum_{i=1}^{n_{\pi}} \langle \pi(g) \, e_{\pi}^{(i)}, e_{\pi}^{(i)} \rangle$$

For a given $f \in C(G)$, let $c_{\pi}(f) = n_{\pi}\chi_{\pi} * f$, where $n_{\pi} = \dim \pi$. It follows from the Peter-Weyl L^2 -theorem [8, Chapter 4] that the Parseval identity

$$||f||_{2}^{2} = \sum_{\pi \in \widehat{G}} ||c_{\pi}(f)||_{2}^{2}$$

holds. It follows that there is at most countable set of values $\pi \in \widehat{G}$ for which $c_{\pi}(f) \neq 0$. This set is called the *spectrum* of f and is denoted by $\operatorname{sp}(f)$. Any continuous function f on the compact group G can be uniformly approximated by linear combinations of matrix functions of those representations $\pi \in \widehat{G}$ for which $\pi \in \operatorname{sp}(f)$ [8, Chapter 4]. *Proof.* (Proof of Proposition 4) Let $\theta := \tilde{\mu} * \mu$. If $\pi \in \widehat{G}$ and

$$f_{x,y}^{\pi}(g) := \langle \pi(g) \, x, y \rangle \quad (x, y \in \mathcal{H}_{\pi})$$

then we can write

$$\begin{pmatrix} \theta^n * f_{x,y}^{\pi} \end{pmatrix} (g) = \int_G f_{x,y}^{\pi} \left(s^{-1}g \right) d\theta^n \left(s \right) = \int_G \langle \pi \left(s^{-1}g \right) x, y \rangle d\theta^n \left(s \right) = \\ = \int_G \langle \pi \left(s^{-1} \right) \pi \left(g \right) x, y \rangle d\theta^n \left(s \right) = \int_G \langle \pi \left(g \right) x, \pi \left(s \right) y \rangle d\theta^n \left(s \right) = \\ = \langle \pi \left(g \right) x, \widehat{\theta} \left(\pi \right)^n y \rangle \quad (\forall n \in \mathbb{N}) \,.$$

Let $f \in C(G)$ and assume that $\int f dm_G = 0$. Let us show that $\theta^n * f \to 0$ uniformly on G. Let π_0 be the trivial representation of G. Since $\pi_0 \notin \operatorname{sp}(f)$, for an arbitrary $\varepsilon > 0$, there exist complex numbers $\lambda_1, ..., \lambda_k$ and $\pi_1, ..., \pi_k \in \widehat{G} \setminus \{\pi_0\}$ such that

$$|f(g) - \lambda_1 \langle \pi_1(g) x_1, y_1 \rangle - \dots - \lambda_k \langle \pi_k(g) x_k, y_k \rangle| < \varepsilon, \ \forall g \in G,$$

where $x_i, y_i \in \mathcal{H}_{\pi_i}$ (i = 1, ..., k). Consequently, we have

$$\left(\theta^{n}*f\right)\left(g\right)-\lambda_{1}\left\langle\pi_{1}\left(g\right)x_{1},\widehat{\theta}\left(\pi_{1}\right)^{n}y_{1}\right\rangle-\ldots-\lambda_{k}\left\langle\pi_{k}\left(g\right)x_{k},\widehat{\theta}\left(\pi_{k}\right)^{n}y_{k}\right\rangle\right|<\varepsilon,$$

which implies

$$\left|\left(\theta^{n} * f\right)(g)\right| \leq \left|\lambda_{1}\right| \left\|\widehat{\theta}\left(\pi_{1}\right)^{n} y_{1}\right\| \left\|x_{1}\right\| + \ldots + \left|\lambda_{k}\right| \left\|\widehat{\theta}\left(\pi_{k}\right)^{n} y_{k}\right\| \left\|x_{k}\right\| + \varepsilon, \quad \forall g \in G.$$

It remains to show that $\|\widehat{\theta}(\pi)^n x\| \to 0$ for all $\pi \in \widehat{G} \setminus \{\pi_0\}$ and $x \in \mathcal{H}_{\pi}$. If $\pi \in \widehat{G}$, then by Theorem 1,

$$\langle \widehat{\theta}(\pi)^n x, y \rangle = \langle \theta^n, f_{x,y}^{\pi} \rangle \to \langle m_G, f_{x,y}^{\pi} \rangle = \langle \widehat{m_G}(\pi) x, y \rangle, \quad \forall x, y \in \mathcal{H}_{\pi}$$

From the orthogonality of π and π_0 , we have $\widehat{m_G}(\pi) = 0$ for all $\pi \in \widehat{G} \setminus \{\pi_0\}$. Hence,

 $\langle \widehat{\theta}(\pi)^n x, y \rangle \to 0 \text{ for all } \pi \in \widehat{G} \setminus \{\pi_0\} \text{ and } x, y \in \mathcal{H}_{\pi}.$

Since \mathcal{H}_{π} is finite dimensional, we have

$$\left\|\widehat{\theta}(\pi)^n x\right\| \to 0 \text{ for all } \pi \in \widehat{G} \setminus \{\pi_0\} \text{ and } x \in \mathcal{H}_{\pi}.$$

If $\int f dm_G = c \neq 0$, then $\int h dm_G = 0$, where $h = f - c\mathbf{1}$ and $\mathbf{1}$ is the identity one function on G. Then as $\theta^n * h \to 0$ uniformly, we have $\theta^n * f \to c$ uniformly on G.

It is well known that if G is a compact group, then the Haar measure m_G on G is an idempotent measure on G with $\operatorname{supp} m_G = G$.

The following result may be of some interest.

Proposition 5. Let G be a compact group and let n be a fixed natural number. If μ is a probability measure on G with supp $\mu = G$, then $\mu = m_G$ is the unique solution of the equation

$$\mu^n + \mu^{n-1} + \dots + \mu = nm_G. \tag{2}$$

Proof. We have

$$(m_G * \mu)(B) = \int_G m_G (Bg^{-1}) d\mu(g) = m_G(B),$$

for every Borel subsets B of G. It follows that $m_G * \mu = m_G$. Also, notice that

$$\mu * \left(\frac{1}{n} \sum_{i=0}^{n-1} \mu^i\right) - \frac{1}{n} \sum_{i=0}^{n-1} \mu^i = \frac{\mu^n - \delta_e}{n} \to 0 \text{ in the } \|\cdot\|_1 \text{-norm, as } n \to \infty.$$

Since the left (or right) multiplication on M(G) is separately continuous, by the Kawada-Ito theorem, we have $\mu * m_G - m_G = 0$. Consequently, we can write

$$\mu^{n+1} - \mu = (\mu - \delta_e) * (\mu^n + \mu^{n-1} + \dots + \mu) =$$
$$= (\mu - \delta_e) * nm_G = n (\mu * m_G - m_G) = 0.$$

So we have $\mu^{n+1} = \mu$, which implies $\mu^{2n} = \mu^n$. If $\nu := \mu^n$, then ν is an idempotent measure with $\operatorname{supp}\nu = G$. Since

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \nu^i = \lim_{n \to \infty} \frac{\delta_e + (n-1)\nu}{n} = \nu \text{ in the } \|\cdot\|_1 - \text{norm},$$

by the Kawada-Ito theorem, we have $\nu = m_G$ or $\mu^n = m_G$. Taking into account the identity $\mu^n = m_G$ in the equation (2), we have

$$\mu^{n-1} + \mu^{n-2} + \dots + \mu = (n-1) m_G.$$

If we continue this process, finally we get $\mu = m_G$.

References

- Billingsley P. Convergence of Probability Measures. 2nd ed. John Wiley & Sons, Inc., New York, 1999.
- Derriennic Y. Lois "zéro ou deux" pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B, 1976, 12 (2), pp. 111-129 (in French).
- 3. Derriennic Y., Lin M. Convergence of iterates of averages of certain operator representations and of convolution powers. J. Funct. Anal., 1989, 85 (1), pp. 86-102.
- 4. Dixmier J. Les C-algèbres et Leurs Représentations. Gauthier-Villars, Paris, 1964 (in French).
- Grenander U. Probabilities on Algebraic Structures. 2nd ed. Almqvist & Wiksell, Stockholm; John Wiley & Sons, Inc., New York-London, 1968.
- Kawada Y., Itô K. On the probability distribution on a compact group, I. Proc. Phys.-Math. Soc. Japan (3), 1940, 22, pp. 977-998.
- 7. Krengel U. Ergodic Theorems. Walter de Gruyter & Co., Berlin, 1985.

•

- 8. Lyubich Yu.I. Introduction to the Theory of Banach Representations of Groups. Birkhäuser Verlag, Basel, 1988.
- Mukherjea A. Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie verw Gebiete, 1976, 33 (4), pp. 273-284.
- 10. Mustafayev H. Mean ergodic theorems for multipliers on Banach algebras. J. Fourier Anal. Appl., 2019, 25 (2), pp. 393-426.
- Mustafayev H. A note on the Kawada-Itô theorem. Statist. Probab. Lett., 2022, 181, Paper No. 109261, pp. 1-6.