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Abstract. Let G be a locally compact group with the left Haar measure mG. For a subset
S of G, by [S] we denote the closed subgroup of G generated by S. Let µ be a probability
measure on G and H := [supp (µ̃ ∗ µ)] , where dµ̃ (g) := dµ

(
g−1

)
. We show that:

a) If G is a compact group, then

w∗ − lim
n→∞

(µ̃ ∗ µ)n = mH ,

where mH (E) = mH (E ∩H) for every Borel subset E of G.

b) If H is not compact, then

w∗ − lim
n→∞

(µ̃ ∗ µ)n = 0.

Some related problems are also discussed.
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1. Introduction

Let G be a locally compact group with the left Haar measure mG (in the case when
G is compact, mG will denote normalized Haar measure on G) and let M (G) be the
convolution measure algebra of G. As usual, C0 (G) will denote the space of all complex
valued continuous functions on G vanishing at infinity. Since C0 (G)

∗
= M (G) , the
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space M (G) carries the weak∗ topology σ (M (G) , C0 (G)) . In the following, the w∗-
topology on M (G) always means this topology. Thus, a sequence {µn}n∈N in M (G)
weak∗ converges to µ ∈ M (G) or w∗- lim

n→∞
µn = µ if:

lim
n→∞

∫
G

fdµn =

∫
G

fdµ, ∀f ∈ C0 (G) .

For a subset S of G, by [S] we will denote the closed subgroup of G generated by S.
A probability measure µ on G is said to be adapted if [suppµ] = G. Also, a probability
measure µ on G is said to be strictly aperiodic if the support of µ is not contained in a
proper closed left cosets gH (H ̸= G, g ∈ G\H) of G.

Recall that the convolution product µ ∗ ν of two measures µ, ν ∈ M (G) is defined by

(µ ∗ ν) (B) =

∫
G

µ
(
Bg−1

)
dν (g) for every Borel subset B of G.

For an arbitrary n ∈ N, by µn we will denote n-th convolution power of µ ∈ M (G),
where µ0 := δe is the Dirac measure concentrated at the unit element e of G. A classical
Kawada-Itô theorem [6, Theorem 7] asserts that if µ is an adapted measure on a compact

metrisable group G, then the sequence of probability measures

{
1
n

n−1∑
i=0

µi

}
n∈N

weak∗

converges to the Haar measure on G (see also, [5, Theorem 3.2.4]). If µ is an adapted
and strictly aperiodic measure on a compact metrisable group G, then w∗- lim

n→∞
µn = mG

[6, Theorem 8]. If µ is an adapted measure on a second countable non-compact locally
compact group G, then w∗- lim

n→∞
µn = 0 [9, Theorem 2]. In [2, Théorème 8], it was proved

that if µ is a strictly aperiodic measure on a non-compact locally compact group G, then
w∗- lim

n→∞
µn = 0 (for related results see also, [1], [5], [10], [11]).

In this note, we present some results of Kawada-Itô type.

2. The Sequence {(µ̃ ∗ µ)n}n∈N
In this section, we study weak∗ convergence of the sequence {(µ̃ ∗ µ)n}n∈N for the prob-
ability measure µ on a locally compact group G.

As is well known, equipped with the involution given by dµ̃ (g) = dµ (g−1), the algebra
M (G) becomes a Banach ∗-algebra. If µ is a probability measure on a locally compact

group G, then as suppµ̃ = (suppµ)
−1

, we have

supp (µ̃ ∗ µ) =
{
(suppµ)

−1 · (suppµ)
}
.

If H is a closed subgroup of the locally compact group G, then mH may be regarded
as a measure on G by putting mH (E) = mH (E ∩H) for every Borel subset E of G.

The following two theorems are the main results of this note.
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Theorem 1. For an arbitrary probability measure µ on a compact (not necessarily
metrisable) group G, we have

w∗ − lim
n→∞

(µ̃ ∗ µ)n = mH ,

where H = [supp (µ̃ ∗ µ)] .

Theorem 2. Let µ be a probability measure on a locally compact group G. If
[supp (µ̃ ∗ µ)] is not compact, then

w∗ − lim
n→∞

(µ̃ ∗ µ)n = 0.

For the proof of Theorems 1 and 2, we need some preliminary results.

Let H be a complex Hilbert space and let B (H) be the algebra of all bounded linear
operators on H. If T is a contraction on H, then by the Mean Ergodic Theorem [7,
Chapter 2],

PTx := lim
n→∞

1

n

n−1∑
k=0

T kx in norm, for every x ∈ H,

where PT is a orthogonal projection onto ker (T − I). The operator PT will be called
mean ergodic projection associated with T. Moreover, we have

H = ker (T − I)⊕ (T − I)H (1)

and TPT = PTT = PT .

The following result is an immediate consequence of the identity (1).

Proposition 1. Let T be a contraction on a Hilbert space H and assume that∥∥Tn+1x− Tnx
∥∥→ 0 for all x ∈ H. Then,

lim
n→∞

Tnx = PTx in norm for every x ∈ H,

where PT is the mean ergodic projection associated with T.

Recall that an operator T ∈ B (H) is said to be positive if ⟨Tx, x⟩ ≥ 0 for all x ∈ H.
For example, T ∗T is a positive operator for any T ∈ B (H) . Now, let T be a positive
contraction. Since lim

n→∞

∣∣λn+1 − λn
∣∣ = 0 for all 0 ≤ λ ≤ 1, by the Spectral Theorem, we

have lim
n→∞

∥∥Tn+1 − Tn
∥∥ = 0.

Even more can be deduced.

Proposition 2. If T is a positive contraction on a Hilbert space, then

lim
n→∞

n
∥∥Tn+1 − Tn

∥∥ ≤ 1

e
.
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Proof. Notice that the spectrum of T is in [0, 1] . Since

max
λ∈[0,1]

∣∣λn+1 − λn
∣∣ = nn

(n+ 1)
n+1 ,

by the Spectral Theorem,∥∥Tn+1 − Tn
∥∥ ≤ max

λ∈[0,1]

∣∣λn+1 − λn
∣∣ = nn

(n+ 1)
n+1 =

1

n

n

n+ 1

1(
1 + 1

n

)n .
It follows that

lim
n→∞

n
∥∥Tn+1 − Tn

∥∥ ≤ 1

e
.

◀

As a consequence of Propositions 1, we have the following.

Corollary 1. If T is a contraction on a Hilbert space, then

lim
n→∞

(T ∗T )
n
= P in the strong operator topology,

where P is an orthogonal projection onto ker (T ∗T − I).

Let G be a locally compact group and let π be a strongly continuous unitary rep-
resentations of G on a Hilbert space Hπ. For an arbitrary µ ∈ M (G) , we can define
µ̂ (π) ∈ B (Hπ), by

⟨µ̂ (π)x, y⟩ =
∫
G

⟨π (g)x, y⟩dµ (g) (x, y ∈ Hπ) .

The map µ → µ̂ (π) is multiplicative, ∗-linear; µ̂ (π)
∗
= ̂̃µ (π), and contractive; ∥µ̂ (π)∥ ≤

∥µ∥1 , where ∥µ∥1 is the total variation norm of µ. By Ĝ we will denote the set of all
equivalence classes of irreducible strongly continuous unitary representations of G. The

function π → µ̂ (π)
(
π ∈ Ĝ

)
is called Fourier-Stieltjes transform of the measure µ. If

µ̂ (π) = 0 for all π ∈ Ĝ, then µ = 0 (for instance, see [4, § 18]).

We will assume that the dual object Ĝ of G is equipped with the Fell topology. Recall
that a point π0 ∈ Ĝ is a limit point of M ⊂ Ĝ in the Fell topology, if the matrix function
g → ⟨π0 (g)x0, x0⟩ (x0 ∈ Hπ0

) can be uniformly approximated on every compact K ⊂ G

by the matrix functions g → ⟨π (g)x, x⟩ (π ∈ M, x ∈ Hπ) . The set M ⊂ Ĝ is said to be
closed if it contains all of its limit points. It is well known that if G is compact, then
every π ∈ Ĝ is finite dimensional. Also, we know that if G is compact (resp. compact

and metrisable) then Ĝ is discrete (resp. countable). These facts are consequences of the
Peter-Weyl theory [8, Chapter 4]. Also, recall that σ-compact locally compact group G

is metrisable if and only if Ĝ is separable (for instance see, [4]).
The following result was proved in [3, Proposition 2.1].
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Lemma. Let µ be a probability measure on a locally compact group G and let π be a
strongly continuous unitary representations of G on a Hilbert space Hπ. Then, we have

ker [µ̂ (π)− Iπ] = {x ∈ Hπ : π (g)x = x, ∀g ∈ [suppµ]} ,

where Iπ is the identity operator on Hπ.

Now, we are in a position to prove Theorem 1.

Proof. (Proof of Theorem 1) Let π ∈ Ĝ and let Hπ be the representation space of π. Since

G is a compact group, Hπ is finite dimensional. Let dimHπ := nπ and let
{
e
(1)
π , ..., e

(nπ)
π

}
be the basic vectors in Hπ. Denote by fπ

i,j the matrix functions of π, where

fπ
i,j (g) = ⟨π (g) e(i)π , e(j)π ⟩ (i, j = 1, ..., nπ) .

Then, we can write

⟨(µ̃ ∗ µ)n , fπ
i,j⟩ =

∫
G

⟨π (g) e(i)π , e(j)π ⟩d (µ̃ ∗ µ)n = ⟨
[
µ̂ (π)

∗
µ̂ (π)

]n
e(i)π , e(j)π ⟩ (∀n ∈ N) .

By Corollary 1,

⟨
[
µ̂ (π)

∗
µ̂ (π)

]n
e(i)π , e(j)π ⟩ → ⟨Pπ

µ e
(i)
π , e(j)π ⟩ (n → ∞) ,

where Pπ
µ is an orthogonal projection onto ker

[
µ̂ (π)

∗
µ̂ (π)− Iπ

]
. So we have

⟨(µ̃ ∗ µ)n , fπ
i,j⟩ → ⟨Pπ

µ e
(i)
π , e(j)π ⟩ (n → ∞) .

By the Peter-Weyl C-Theorem [8, Chapter 4], the system of matrix functions{
fπ
i,j : π ∈ Ĝ, i, j = 1, ..., nπ

}
is linearly dense in C (G) . Consequently, the limit

lim
n→∞

⟨(µ̃ ∗ µ)n , f⟩ exists for all f ∈ C (G) .

Since

f → lim
n→∞

⟨(µ̃ ∗ µ)n , f⟩

is a bounded linear functional on C (G), there exists a measure θµ ∈ M (G) such that

lim
n→∞

⟨(µ̃ ∗ µ)n , f⟩ = ⟨θµ, f⟩, ∀f ∈ C (G) .

So we have

w∗- lim
n→∞

(µ̃ ∗ µ)n = θµ.
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Now, let H := [supp (µ̃ ∗ µ)] . It remains to show that θµ = mH . Let us see first that θµ
is an idempotent measure. Since the left (or right) multiplication on M (G) is separately
continuous, we have (µ̃ ∗ µ) ∗ θµ = θµ, which implies

(µ̃ ∗ µ)n ∗ θµ = θµ, ∀n ∈ N.

As (µ̃ ∗ µ)n → θµ in the w∗-topology, we have θ2µ = θµ. Hence, θµ is an idempotent
measure. Notice also that

θ̂µ (π) = Pπ
µ , ∀π ∈ Ĝ.

Further, since m̂H (π) is an orthogonal projection, by Lemma, we can write

m̂H (π)Hπ = ker [m̂H (π)− Iπ] = {x ∈ Hπ : π (g)x = x, ∀g ∈ H} .

For the same reasons,

θ̂µ (π)Hπ = Pπ
µHπ = ker

[
µ̂ (π)

∗
µ̂ (π)− Iπ

]
= {x ∈ Hπ : π (g)x = x, ∀g ∈ H} .

Thus we have θ̂µ (π) = m̂H (π) for all π ∈ Ĝ. It follows that θµ = mH . ◀

Let µ be a probability measure on a compact metrisable group G. A Borel subset E of
G is said to be a continuity set of µ if µ (∂E) = 0, where ∂E denotes topological boundary
of E. By the well known Portmanteau theorem, the sequence {µn}n∈N of the probability
measures on G, weak∗ converges to the measure µ if and only if µn (E) → µ (E) for any
continuity set E of µ.

Corollary 2. Let µ be a probability measure on a compact metrisable group G with
[supp (µ̃ ∗ µ)] = G. The following assertions hold:

(a) For an arbitrary continuity set E of mG,

lim
n→∞

(µ̃ ∗ µ)n (E) = mG (E) .

(b) Let ν be a probability measure on G and assume that for an arbitrary continuity
set E of ν,

lim
n→∞

(µ̃ ∗ µ)n (E) = ν (E) .

Then, ν = mG.

Let G be a locally compact group. For an arbitrary f ∈ Lp (G) (1 ≤ p < ∞) , we put

f∨ (g) := f
(
g−1

)
and f̃ (g) := f (g−1).

Notice that for every u, υ ∈ L2 (G) , the function u ∗ υ̃ is in C0 (G) and

⟨µ, u ∗ υ̃⟩ = ⟨µ ∗ υ, u⟩, ∀µ ∈ M (G) .

It follows that the set
{
u ∗ υ̃ : u, υ ∈ L2 (G)

}
is linearly dense in C0 (G) . Notice also that

if f ∈ Lp (G) (1 < p < ∞, p ̸= 2) and h ∈ Lq (G) (1/p+ 1/q = 1), then h ∗ f∨ ∈ C0 (G)
and

⟨µ, h ∗ f∨⟩ = ⟨µ ∗ f, h⟩, ∀µ ∈ M (G) .
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It follows that {h ∗ f∨ : h ∈ Lq (G) , f ∈ Lp (G)} is linearly dense in C0 (G) .
Let π be the left regular representation of G on Lp (G) (1 ≤ p < ∞), where

π (g) f (s) = f
(
g−1s

)
:= fg (s) .

Then, π is continuous and µ̂ (π) f = µ∗f for every µ ∈ M (G) . We will denote this opera-
tor by λp (µ) , the left convolution operator. The left convolution operator λp (µ) f := µ∗f
is a bounded linear operator on Lp (G) , that is,

∥λp (µ) f∥p ≤ ∥µ∥1 ∥f∥p and ∥λ1 (µ)∥1 = ∥µ∥1 .

Proof. (Proof of Theorem 2) It suffices to show that

⟨(µ̃ ∗ µ)n , u ∗ ṽ⟩ → 0 for all u, v ∈ L2 (G) .

For this, we must show that
⟨(µ̃ ∗ µ)n ∗ v, u⟩ → 0.

Since λ2 (µ̃) = λ2 (µ)
∗
, by Lemma,{

f ∈ L2 (G) : λ2 (µ)
∗
λ2 (µ) f = f

}
=
{
f ∈ L2 (G) : λ2 (µ̃ ∗ µ) f = f

}
=
{
f ∈ L2 (G) : fs = f , ∀s ∈ [supp (µ̃ ∗ µ)]

}
.

Since [supp (µ̃ ∗ µ)] is not compact, from the identity fs = f for all s ∈ [suppµ], we have
f = 0 (a.e.). Hence,

ker
[
λ2 (µ)

∗
λ2 (µ)− I

]
= 0.

By Corollary 1, [
λ2 (µ)

∗
λ2 (µ)

]n → 0 in the strong operator topology.

Now if u, v ∈ L2 (G) , then we get

⟨(µ̃ ∗ µ)n ∗ v, u⟩ = ⟨
[
λ2 (µ)

∗
λ2 (µ)

]n
v, u⟩ → 0.

◀

3. Norm Convergence

In this section, we present some results concerning norm convergence of the sequence
{(µ̃ ∗ µ)n ∗ f}n∈N in Lp (G) spaces.

Proposition 3. Let µ be a probability measure on a locally compact group G and let
f ∈ Lp (G) (1 < p < ∞) . The following assertions hold:

(a) If G is compact and [supp (µ̃ ∗ µ)] = G, then

(µ̃ ∗ µ)n ∗ f →
(∫

G

fdmG

)
1 in Lp-norm,

where 1 is the identity one function on G.
(b) If [supp (µ̃ ∗ µ)] is not compact, then

(µ̃ ∗ µ)n ∗ f → 0 in Lp-norm.
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Proof. If θ := µ̃∗µ, then by Corollary 1, θn∗f → u in the Lp−norm for some u ∈ Lp (G) .
On the other hand, by Theorem 1,

w∗- lim
n→∞

θn = mG.

If v ∈ Lq (G) (1/p+ 1/q = 1) , then as v∨ ∗ f ∈ C (G) , we can write

⟨u, v⟩ = lim
n→∞

⟨θn ∗ f, v⟩ = ⟨θn, v∨ ∗ f⟩ = ⟨mG, v
∨ ∗ f⟩ = ⟨mG ∗ f, v⟩.

So we have

u = mG ∗ f =

∫
G

fdmG.

If [supp (µ̃ ∗ µ)] is not compact, then by Theorem 2,

w∗- lim
n→∞

θn = 0.

For an arbitrary v ∈ Lq (G) (1/p+ 1/q = 1), since v ∗ f∨ ∈ C0 (G) , we get

⟨u, v⟩ = lim
n→∞

⟨θn ∗ f, v⟩ = lim
n→∞

⟨θn, v ∗ f∨⟩ = 0.

Hence, u = 0. ◀

Next, we have the following.

Proposition 4. Let µ be a probability measure on a compact group G. If [supp (µ̃ ∗ µ)] =
G, then for an arbitrary f ∈ C (G),

(µ̃ ∗ µ)n ∗ f →
(∫

G

fdmG

)
1 uniformly on G.

For the proof, we need some preliminary results. Let χπ denote the character of π ∈ Ĝ;

χπ (g) =

nπ∑
i=1

⟨π (g) e(i)π , e(i)π ⟩.

For a given f ∈ C (G) , let cπ (f) = nπχπ ∗ f, where nπ = dimπ. It follows from the
Peter-Weyl L2-theorem [8, Chapter 4] that the Parseval identity

∥f∥22 =
∑
π∈Ĝ

∥cπ (f)∥22

holds. It follows that there is at most countable set of values π ∈ Ĝ for which cπ (f) ̸= 0.
This set is called the spectrum of f and is denoted by sp(f) . Any continuous function
f on the compact group G can be uniformly approximated by linear combinations of
matrix functions of those representations π ∈ Ĝ for which π ∈sp(f) [8, Chapter 4].
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Proof. (Proof of Proposition 4) Let θ := µ̃ ∗ µ. If π ∈ Ĝ and

fπ
x,y (g) := ⟨π (g)x, y⟩ (x, y ∈ Hπ),

then we can write(
θn ∗ fπ

x,y

)
(g) =

∫
G

fπ
x,y

(
s−1g

)
dθn (s) =

∫
G

⟨π
(
s−1g

)
x, y⟩dθn (s) =

=

∫
G

⟨π
(
s−1
)
π (g)x, y⟩dθn (s) =

∫
G

⟨π (g)x, π (s) y⟩dθn (s) =

= ⟨π (g)x, θ̂ (π)
n
y⟩ (∀n ∈ N) .

Let f ∈ C (G) and assume that
∫
fdmG = 0. Let us show that θn ∗ f → 0 uniformly

on G. Let π0 be the trivial representation of G. Since π0 /∈sp(f), for an arbitrary ε > 0,

there exist complex numbers λ1, ..., λk and π1, ..., πk ∈ Ĝ\ {π0} such that

|f (g)− λ1⟨π1 (g)x1, y1⟩ − ...− λk⟨πk (g)xk, yk⟩| < ε, ∀g ∈ G,

where xi, yi ∈ Hπi
(i = 1, ..., k). Consequently, we have∣∣∣(θn ∗ f) (g)− λ1⟨π1 (g)x1, θ̂ (π1)

n
y1⟩ − ...− λk⟨πk (g)xk, θ̂ (πk)

n
yk⟩
∣∣∣ < ε,

which implies

|(θn ∗ f) (g)| ≤ |λ1|
∥∥∥θ̂ (π1)

n
y1

∥∥∥ ∥x1∥+ ...+ |λk|
∥∥∥θ̂ (πk)

n
yk

∥∥∥ ∥xk∥+ ε, ∀g ∈ G.

It remains to show that
∥∥∥θ̂ (π)n x∥∥∥ → 0 for all π ∈ Ĝ\ {π0} and x ∈ Hπ. If π ∈ Ĝ, then

by Theorem 1,

⟨θ̂ (π)n x, y⟩ = ⟨θn, fπ
x,y⟩ → ⟨mG, f

π
x,y⟩ = ⟨m̂G (π)x, y⟩, ∀x, y ∈ Hπ.

From the orthogonality of π and π0, we have m̂G (π) = 0 for all π ∈ Ĝ\ {π0} . Hence,

⟨θ̂ (π)n x, y⟩ → 0 for all π ∈ Ĝ\ {π0} and x, y ∈ Hπ.

Since Hπ is finite dimensional, we have∥∥∥θ̂ (π)n x∥∥∥→ 0 for all π ∈ Ĝ\ {π0} and x ∈ Hπ.

If
∫
fdmG = c ̸= 0, then

∫
hdmG = 0, where h = f−c1 and 1 is the identity one function

on G. Then as θn ∗ h → 0 uniformly, we have θn ∗ f → c uniformly on G. ◀

It is well known that if G is a compact group, then the Haar measure mG on G is an
idempotent measure on G with suppmG = G.

The following result may be of some interest.

Proposition 5. Let G be a compact group and let n be a fixed natural number. If µ is
a probability measure on G with suppµ = G, then µ = mG is the unique solution of the
equation

µn + µn−1 + ...+ µ = nmG. (2)
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Proof. We have

(mG ∗ µ) (B) =

∫
G

mG

(
Bg−1

)
dµ (g) = mG (B) ,

for every Borel subsets B of G. It follows that mG ∗ µ = mG. Also, notice that

µ ∗

(
1

n

n−1∑
i=0

µi

)
− 1

n

n−1∑
i=0

µi =
µn − δe

n
→ 0 in the ∥·∥1 -norm, as n → ∞.

Since the left (or right) multiplication on M (G) is separately continuous, by the Kawada-
Ito theorem, we have µ ∗mG −mG = 0. Consequently, we can write

µn+1 − µ = (µ− δe) ∗
(
µn + µn−1 + ...+ µ

)
=

= (µ− δe) ∗ nmG = n (µ ∗mG −mG) = 0.

So we have µn+1 = µ, which implies µ2n = µn. If ν := µn, then ν is an idempotent
measure with suppν = G. Since

lim
n→∞

1

n

n−1∑
i=0

νi = lim
n→∞

δe + (n− 1) ν

n
= ν in the ∥·∥1 − norm,

by the Kawada-Ito theorem, we have ν = mG or µn = mG. Taking into account the
identity µn = mG in the equation (2), we have

µn−1 + µn−2 + ...+ µ = (n− 1)mG.

If we continue this process, finally we get µ = mG. ◀
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