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Abstract. A pencil of fourth-order differential equations on the entire axis with multiple
characteristics is considered. Using special solutions of a fourth-order differential equa-
tion, the spectrum of a differential pencil is studied. Necessary and sufficient conditions
are found for a non-real number to be an eigenvalue of this pencil. It is proved that the
operator pencil has no eigenvalues on the real axis.
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1. Introduction

Let us consider in the space L2 (−∞,+∞) a differential operator pencil Lλ, generated
by the left-hand side of the pencil of differential equations

ℓ

(
x,

d

dx
, λ

)
y =

(
d2

dx2
+ λ2

)2

y + r (x) y′ + (λp (x) + q (x)) y = 0, (1)

where the complex-valued functions r (x), p (x) and q (x) satisfy the conditions

r (x) ∈ C(1) (−∞,+∞) , p (x) ∈ C(1) (−∞,+∞) , q (x) ∈ C (−∞,+∞) ,
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+∞∫
−∞

(
1 + x4

){∣∣∣r(j) (x)∣∣∣+ ∣∣∣p(j) (x)∣∣∣+ |q (x)|
}
dx <∞, j = 0, 1. (2)

In this work, the spectral properties of pencil Lλ are studied. Note that for a pencil Lλ

defined on a semi-axis, a similar problem was studied in [2], [7]. To study the pencil Lλ on
the entire axis, in contrast to the case of the semi-axis, it will be necessary to use special
solutions of equation (1) with asymptotics at −∞. The latter circumstance required a
significant modification of some reasoning characteristic of the pencil Lλ defined on the
semi-axis. Some results of this work were first announced in [8].

The results of this work can be used in studying direct and inverse scattering problems
for equation (1). Note that inverse problems for differential equations of high orders have
been studied in the works of many authors (see [1], [4], [9], [10] and the references therein).

2. Preliminary Information

Consider equation the (1). Let’s we put

σ±
j (x) = ±

±∞∫
x

|s|j {|p (s)|+ |r (s)|+ |sr′ (s)|+ |sq (s)|} ds,

τ± (x) = ±
±∞∫
x

s2 {|p (s)|+ |r (s)|+ |sr′ (s)|+ |sq (s)|} ds.

It is known [2], [7] that under conditions (2) equation (1) has special solutions
f±j (x, λ) , g±j (x, λ) representable in the form

f±j (x, λ) = xj−1e±iλx +
∞∫
x

A±
j (x, t) e±iλtdt, j = 1, 2,

g±j (x, λ) = xj−1e∓iλx +
x∫

−∞
B±

j (x, t) e∓iλtdt, j = 1, 2,
(3)

where A±
j (x, t) , B±

j (x, t) are four times continuously differentiable functions and the
following relations hold: ∣∣A±

j (x, t)
∣∣ ≤ 1

4
σ+
j

(
x+t
2

)
exp {τ+ (x)} ,

∣∣B±
j (x, t)

∣∣ ≤ 1

4
σ−
j

(
x+t
2

)
exp {τ− (x)} .

(4)

According to relations (3), (4), for each fixed x, the functions f±j (x, λ) , g±j (x, λ) are
analytic functions in the open half-plane ±Imλ > 0 and are continuous up to the real
axis. Further, from the general theory it is known that (see [3], [5], [6]) for all λ ̸= 0,
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the equation (1) also has linearly independent solutions ψ±
j (x, λ) , j = 1, 2, 3, 4 with

asymptotics

ψ±
j (x, λ) = e∓iωjλx (1 + o (1)) , ωj = e

iπ(j−1)
2 , x→ ±∞. (5)

Now we consider the unperturbed equation(
d2

dx2
+ λ2

)2

y = 0. (6)

Obviously, for λ ̸= 0, equation (6) has four linearly independent solutions of the form

y1 (x, λ) = eiλx, y2 (x, λ) = xeiλx, y3 (x, λ) = e−iλx, y4 (x, λ) = xe−iλx.

It is easy to check that the Wronskian W {y1, y2, y3, y4} of these solutions is equal to
16λ4.

3. Studying the Spectrum of the Pencil Lλ
Let us study the eigenvalues of the operator pencil Lλ. We denote by W± (λ) the Wron-
skian of the solutions f±1 (x, λ) , f±2 (x, λ) , g±1 (x, λ) , g±2 (x, λ) of equation (1):

W± (λ) =W
{
f±1 (x, λ) , f±2 (x, λ) , g±1 (x, λ) , g±2 (x, λ)

}
.

Since the Wronskian of solutions to equation (1) does not depend on x, we can write:

W± (λ) =

∣∣∣∣∣∣∣∣∣
f±1 (0, λ) f±2 (0, λ) g±1 (0, λ) g±2 (0, λ)

f
±(1)
1 (0, λ) f

±(1)
2 (0, λ) g

±(1)
1 (0, λ) g

±(1)
2 (0, λ)

f
±(2)
1 (0, λ) f

±(2)
2 (0, λ) g

±(2)
1 (0, λ) g

±(2)
2 (0, λ)

f
±(3)
1 (0, λ) f

±(3)
2 (0, λ) g

±(3)
1 (0, λ) g

±(3)
2 (0, λ)

∣∣∣∣∣∣∣∣∣ . (7)

Theorem 1. In order for a number λ with ±Imλ > 0 to be an eigenvalue of the operator
pencil Lλ, it is necessary and sufficient that it satisfies the equation:

W± (λ) = 0. (8)

Proof. Let the number λ with Imλ > 0 be an eigenvalue of the operator pencil Lλ.
Then equation (1) has a solution y (x, λ) from the space L2 (−∞,+∞) . On the other
hand, two (we denote them by ψ+

k (x, λ) , ψ+
m (x, λ) ) of solutions (5) do not belong to the

space L2 (0,+∞) . These solutions, together with the solutions f+1 (x, λ) , f+2 (x, λ) form
a fundamental system of solutions to equation (1). Therefore, the decomposition

y (x, λ) = C1f
+
1 (x, λ) + C2f

+
2 (x, λ) + C3ψ

+
m (x, λ) + C4ψ

+
k (x, λ)

is valid. Since y (x, λ) ∈ L2 (0,+∞) and Imλ > 0, it follows from the last relation that
C3 = C4 = 0. Therefore, the following identity is true:

y (x, λ) = C1f
+
1 (x, λ) + C2f

+
2 (x, λ) .
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Similarly is established the following equality

y (x, λ) = D1g
+
1 (x, λ) +D2g

+
2 (x, λ) .

From the last two equalities we obtain that

C1f
+
1 (x, λ) + C2f

+
2 (x, λ)−D1g

+
1 (x, λ)−D2g

+
2 (x, λ) = 0.

On the other hand, y (x, λ) serves as a nontrivial solution to equation (1). Therefore,
one of the coefficients C1, C2, D1, D2 is necessarily different from zero. It follows that the
solutions f+1 (x, λ) , f+2 (x, λ) , g+1 (x, λ) , g+2 (x, λ) are linearly dependent. As is clear from
the latter, W+ (λ) = 0. On the contrary, it follows from equality (8) that the columns of
the determinant ∣∣∣∣∣∣∣∣∣

f±1 (x, λ) f±2 (x, λ) g±1 (x, λ) g±2 (x, λ)

f
±(1)
1 (x, λ) f

±(1)
2 (x, λ) g

±(1)
1 (x, λ) g

±(1)
2 (x, λ)

f
±(2)
1 (x, λ) f

±(2)
2 (x, λ) g

±(2)
1 (x, λ) g

±(2)
2 (x, λ)

f
±(3)
1 (x, λ) f

±(3)
2 (x, λ) g

±(3)
1 (x, λ) g

±(3)
2 (x, λ)

∣∣∣∣∣∣∣∣∣
are linearly dependent. In particular, we get

C1f
+
1 (x, λ) + C2f

+
2 (x, λ) +D1g

+
1 (x, λ) +D2g

+
2 (x, λ) = 0.

Using this equality, it is established that equation (1) has a nontrivial solution y (x, λ)
from the space L2 (−∞,+∞) . Therefore, the number λ with Imλ > 0 is an eigenvalue
of the operator pencil Lλ. The case Imλ < 0 is treated similarly. ◀

Theorem 2. The eigenvalues of the operator pencil Lλ in the half-plane ±Imλ > 0
form no more than a countable set whose limit points can only be on the real axis.

Proof. W± (λ) is an analytic function in the half-plane ±Imλ > 0 and hence its zeros
form a finite or countable set. Moreover, from formulas (3), (4), (7) it follows that

W± (λ) = C±λN
(
1 +O

(
1

λ

))
, λ→ ∞, N > 1.

From the last equality it follows that the zeros of the characteristic function W± (λ),
i.e. the eigenvalues of the operator pencil Lλ form a bounded set. By virtue of the theorem
on the uniqueness of an analytic function, the limit points of this set cannot be in the half-
plane ±Imλ > 0. ◀

Now we study the discrete spectrum of the operator pencil Lλ on the real axis.

Theorem 3. On the real axis the operator pencil Lλ has no eigenvalues.
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Proof. Let the number λ, where λ2 > 0, serve as an eigenvalue of the pencil Lλ. Then
equation (1) would have a nonzero solution y (x, λ) ∈ L2 (−∞,+∞) . Note that for
λ2 > 0 the solutions f+1 (x, λ) , f+2 (x, λ) , f−1 (x, λ) , f−2 (x, λ) form a fundamental system
of solutions to equation (1). Therefore, the solution y (x, λ) can be represented in the
form

y (x, λ) = C1f
+
1 (x, λ) + C2f

+
2 (x, λ) + C3f

−
1 (x, λ) + C4f

−
2 (x, λ) .

Using (3), (4) we conclude that

y (x, λ) = (C1 + C2x) e
iλx (1 + o (1)) + (C3 + C4x) e

−iλx (1 + o (1)) , x→ +∞.

It follows that if y (x, λ) ∈ L2 (−∞,+∞) , then necessarily C1 = C2 = C3 = C4 = 0. The
last statement contradicts the fact that y (x, λ) ̸= 0. Further, it is known that (see [3], [5])
for λ = 0, the equation (1) has four linearly independent solutions yj (x) , j = 1, .2, 3, 4,
which satisfy the asymptotic equalities

yj (x) =
xj−1

(j − 1)!

{
1 + o

(
1

x

)}
, x→ ∞.

It follows that the number λ = 0 is not an eigenvalue of the operator pencil Lλ. ◀

In conclusion, we note that using the expansion formula obtained in [8], we can
prove that the continuous spectrum of the operator pencil Lλfills the entire real axis.
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