
Baku Mathematical Journal
2024, Vol. 3, No 1, PP. 42-57
https://doi.org/10.32010/j.bmj.2024.05

INVERSE NODAL PROBLEMS FOR PENCILS OF
SINGULAR STURM-LIOUVILLE OPERATORS

R. AMIROV

Received: 30.10.2023 / Revised: 28.12.2023 / Accepted: 09.01.2024

In memory of M. G. Gasymov on his 85th birthday

Abstract. In this study, some properties of the pencils of singular Sturm-Liouville oper-
ators are investigated. Firstly, the behaviors of eigenvalues and eigenfunctions is learned,
then for each discontinuity point

a ∈ ℜ =

{
rπ : r =

p

q
, p < q, p, q ∈ N

}
,

a solution of the inverse problem is given to determine the potential function and param-
eters β, h and H with the help of a dense set of nodes. And finally, a constructive method
is given for solving the given inverse problem.
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1. Introduction

Solvable models of quantum mechanics are investigated in detail in the study [1]. As can
be seen, these models are generally expressed with Hamilton operators or Schrödinger
operators with singular coefficients. Many of the problems expressed by these models are
related to the solution of spectral inverse problems for differential operators with singular
coefficients. However, many problems in mathematical physics are reduced to the study
of differential operators whose coefficients are generalized functions.

For example, the stationary vibrations of a spring-tied homogeneous wire fixed at
both ends, density R′ (x) = aδ (x− x0) (δ (x)-Dirac function) and stiffness R(x) at point
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x0, whose domain set is

D (Lo) =
{
y (x) ∈W 2

2 [0, 1] : y′ (x0+)− y′ (x0−) = ay (x0) ,

x0 ∈ (0, 1) ; y(0) = 0 = y(1)
}

and is expressed by the differential operator given as Lo = − d2

dx2
in Hilbert space L2 [0, 1].

There is detailed information about the correct (regular) definition of such operators and
the examination of their spectral properties in [2], [14], [19], [20] studies.

We consider the following quadratic pencils of Sturm-Liouville equation of the form

ℓy := −y′′ + [λp (x) + q(x)] y = λ2y, x ∈ [0, π]∖ {a} , (1)

with the boundary conditions

U (y) := y′ (0)− hy(0) = 0, (2)

V (y) := y′ (π) +Hy(π) = 0, (3)

where q(x) is a real function belonging to the space L2 [0, π] , λ is a spectral parameter,
p (x) = βδ (x− a) , h, a,H and β are real numbers.

Definition. Any function y(x) ∈ W 2
2 (Ω) (Ω = [0, π] ∖ {a}), satisfying the Sturm-

Liouville equation
−y

′′
+ q(x)y (x) = λ2y, (4)

and the discontinuity condition at the point a:

y′ (a+ 0)− y′ (a− 0) = λβy (a) , (5)

is called the solution of the equation (1).

Next, suppose that for all functions y(x) ∈ W 2
2 (Ω) , y(x) ̸= 0, satisfying conditions

(2),(3) and (5), we have

h |y(0)|2 +H |y(π)|2 +
π∫

0

{
|y′(x)|2 + q(x) |y(x)|2

}
dx > 0.

Here we denote byWn
2 (Ω) the space of functions f(x),x ∈ Ω, such that the derivatives

f (m) (x),
(
m = 1, n− 1

)
are absolute continuous and f (n) (x) ∈ L2 (Ω) .

We denote the boundary value problem (1)-(3), (5) by L = L(q, β).
Quadratic pencils of Sturm-Liouville equations with singular coefficient appear fre-

quently in various models of classical and quantum mechanics.
In studies [11], [13], [18], the spectral properties of the operator produced by the

regular differential equation given with non-separated boundary conditions containing the
spectral parameter were examined and the uniqueness theorems related to the solution of
the spectral inverse problem were proved. In studies [5]-[8], the spectral properties of the
operator produced by the Schrödinger equation with the singular coefficient given with
the boundary conditions depending on the spectral parameter were examined and the
solution of the inverse spectral problems according to different spectral data was given.
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2. Preliminaries

Let y(x, λ) and z (x, λ) be continuously differentiable solutions on (0, a)∪(a, π) of equation
(4), satisfying the discontinuity condition (5), then

⟨y, z⟩x=a−0 = ⟨y, z⟩x=a+0 ,

i.e. the function ⟨y, z⟩ is continuous on (0, π) .
Let φ (x, λ) be solution of equation (4), satisfying the initial conditions

φ (0, λ) = 1, φ′ (0, λ) = h (6)

and the discontinuity condition (5).
The characteristic function of the problem (1)-(3) is in the form

∆ (λ) = φ′(π, λ) +Hφ (π, λ)

with the function φ(x, λ) being the solution of equation (1) satisfying the initial conditions
(6).

It is also clear that this is an entire function [9], so this problem has a countable
number of eigenvalues. We can also prove the following propositions from the methods
used in [12].

In addition, using the methods used in study [10], the following propositions are
proved:

Lemma 1. The eigenvalues of the problem (1)-(3) are real and not equal to zero.

Lemma 2. The eigenvalues of problem (1) are simple.

Let ∆0 (λ) be the characteristic function of the problem corresponding to the case is
q(x) ≡ 0 problem (1)-(3). In this case, it becomes

∆0 (λ) = φ′
0(π, λ) +Hφ0 (π, λ) ,

where φ0 (x, λ) is the solution of the equation (4), satisfying initial conditions (2) and
discontinuity condition (5).

Lemma 3. Let Gδ =
{
λ :
∣∣λ− λ0n

∣∣ ≥ δ, n = 1, 2, ...
}
be a small enough number δ <

r

2
.

The zeros of the ∆0 (λ) function λ
0
n are discrete, so

inf
n ̸=k

∣∣λ0n − λ0k
∣∣ = r > 0.

Lemma 4. There is a constant Cδ > 0 so that the inequality

|∆0 (λ)| ≥ Cδ |λ| e|Imλ|π, λ ∈ Gδ,

is satisfied.
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Theorem 1. When λn, n = 1, 2, ... eigenvalues of problem (1)-(3) are n→ ∞,

λn = λ0n +
dn
λ0n

+ o

(
1

λ0n

)
, (7)

has behavior, where

dn =
1

∆̇0 (λ0n)

{
(ω0 (π) +H) sinλ0nπ +

(
H

2
β − ω1 (π)

)
cosλ0nπ+

+

(
ω2 (π)−

H

2
β

)
cosλ0n(2a− π) + ω3 (π) sinλ

0
n(2a− π)

}
is the bounded sequence. Where ∆̇

(
λ0n
)
=

[
d

dλ
∆0 (λ)

]
λ=λ0

n

.

Proof. It is clear from the definition given above that the problem (1)-(3) is equivalent
to the problem (4)-(5), (2)-(3), that is, each solution of the problem (1)-(3) is equivalent
to the solution of the problem (4) satisfying the (2),(3) boundary and (5) discontinuity
conditions. Let us denote the problem of seeking the solution of (4) equation satisfying
(2)-(3) boundary conditions and (5) discontinuity condition with L. By applying the
method in the study [17], we obtain the solution of the problem L that satisfies the
initial conditions for (6), while |λ| → ∞, according to the x variable,

φ (x, λ) = cosλx+

h+
1

2

x∫
0

q(t)dt

 sinλx

λ
+ o

(
exp (|τ |x)

|λ|

)
, (8)

φ′ (x, λ) = −λ sinλx+

h+
1

2

x∫
0

q(t)dt

 cosλx+ o (exp (|τ |x)) ,

in the case of x < a and

φ (x, λ) = cosλx+
1

2
β (sinλx− sinλ (2a− x)) + ω0 (x)

sinλx

λ
+ ω1 (x)

cosλx

λ

+
(
1− 2β2

) a∫
0

q(t)dt
sinλ(2a− x)

4λ
+ ω2 (x)

cosλ(2a− x)

2λ
+ o

(
exp (|τ |x)

|λ|

)
, (9)

φ′ (x, λ) = λ

[
− sinλx+

1

2
β (cosλx+ cosλ (2a− x))

]
+ ω0 (x) cosλx− ω1 (x) sinλx

+ω2 (x) sinλ(2a− x)− 1

4

(
1− 2β2

) a∫
0

q(t)dt cosλ(2a− x) + o (exp (|τ |x))

in the case of x > a are valid. Here

ω0 (x) = h− 1

4
β

a∫
0

q(t)dt+
1

2

x∫
0

q(t)dt, ω1 (x) = −1

2
β

h− 1

2

a∫
0

q(t)dt+

x∫
0

q(t)dt

 ,



46 Inverse nodal problems for pencils of singular Sturm-Liouville operators

ω2 (x) =
1

2
β

h− 3

2

a∫
0

q(t)dt+

x∫
0

q(t)dt

 , ω3(x) =
1

4
(1− β2)

a∫
0

q(t)dt.

In this case,

∆ (λ) = λ

[
− sinλπ +

1

2
β (cosλπ + cosλ (2a− π))

]
+

+(H + ω0 (π)) cosλπ +

(
H

2
β − ω1 (π)

)
sinλπ+ (10)

+

(
−H

2
β + ω2 (π)

)
sinλ (2a− π)− ω3 (π) cosλ (2a− π) + o (exp (|τ |π))

is for |λ| → ∞.
Let

∆0 (λ) = λ

[
− sinλπ +

1

2
β (cosλπ + cosλ (2a− π))

]
be a function. Using the [12] study, for the roots of the equation ∆0 (λ) = 0,

λ0n = n+ hn, sup
n

|hn| = h < +∞

we obtain the following equality.
If we use the method given in the study [12] for the characteristic equation ∆ (λ) = 0,

it is obtained from (10) that
λn = λ0n + o(1)

according to Rouche’s theorem.
Denote Gn :=

{
λ : |λ| =

∣∣λ0n∣∣+ δ⧸2
}
. On the other hand [16], since

∆ (λ)−∆0 (λ) = O (exp (|Imλ|π)) , |λ| → ∞,

for sufficiently large values of hand λ ∈ Gn, we get

|∆ (λ)−∆0 (λ)| <
1

2
Cδ exp (|Imλ|π) .

Thus, for λ ∈ Gn,

|∆0 (λ)| ≥ Cδ |λ| exp (|Imλ|π) > 1

2
Cδ |λ| exp (|Imλ|π) > |∆ (λ)−∆0 (λ)|

such that n is sufficiently large natural number. It follows from that for sufficiently large
values n, functions ∆0 (λ) and ∆0 (λ) + (∆ (λ)−∆0 (λ)) = ∆ (λ) have the same number
of zeros counting multiplicities inside contour Gn according to Rouches theorem. So,
they have the (n+ 1) number of zeros λ0, λ1, ..., λn. Analogously, it is shown by Rouche’s
teorem that for sufficiently large values of n, function ∆ (λ) has a unique of zero λn inside
each circle C(δ) =

{
λ :
∣∣λ− λ0n

∣∣ ≤ δ
}
. Since δ is orbitrary sufficiently small number, we

must have
λn = λ0n + εn, εn = o(1), n→ ∞. (11)
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Since function ∆0 (λ) is type of ”sine” [12, p. 119], the number γδ > 0 exsists such

that for all n,
∣∣∣∆̇0

(
λ0n
)∣∣∣ ≥ γδ > 0. Since λn are zeros of ∆ (λ), from (10) we get

εn = − 1

λ0n∆̇0(λ0n)

{
(ω0 (π) +H) sinλ0nπ +

(
H

2
β − ω1 (π)

)
cosλ0nπ+ (12)

+

(
ω2 (π)−

H

2
β

)
cosλ0n(2a− π) + ω3 (π) sinλ

0
n(2a− π)

}
+ o

(
1

λ0n

)
.

Substituting (12) into (11), we get (7). ◀

3. Inverse Nodal Problems

In this section, the solution of the nodal inverse problem for the diffusion operator with
p(x) = βδ (x− a)-Dirac delta potential and any of the set of nodal points dense in the
interval (0, π) of the constants β, h,H and q(x) function, an algorithm for determining
with the help of subsequence will be given. Such problems have been studied in studies
of [3], [15], [21], [22] for the regular diffusion operator.

In the [4] investigate inverse nodal problems for energy-dependant p-Laplacian equa-
tions and of the study applies the Tikhonov regularization method to reconstruct po-
tential functions by only using zeros of one eigenfunction and show that the space of
the p-Laplacian operator is homeomorphic to the partition set of the space of nodal
sequences.

The eigenfunctions of the boundary value problem (1)-(3) or (4), (2), (3), (5) have
the form yn (x) = φ (x, λn) . We note that yn (x) are real-valued functions. Substituting
(7) into (8) and (9) we obtain the following asimptotic formulae for n→ ∞ uniformly in
x:

φn (x) = cosλ0nx+

−dnx+ h+
1

2

x∫
0

q(t)dt

 sinλ0nx

λ0n
+ o

(
exp (|τ |x)

λ0n

)
, x < a, (13)

φn (x) =

(
1− 1

2
β sin 2aλ0n

)
cosλ0nx+

1

2
β
(
1 + cos 2aλ0n

)
sinλ0nx

+

ω0 (x)− dnx− 1

4

(
1− 2β2

)
cos 2aλ0n

x∫
0

q(t)dt+

(
ω2 (x)−

1

2
βdnx

)
sin 2aλ0n

 sinλ0nx

λ0n

+

ω1 (x) +
1

2
βdnx+

1

4
(1− 2β2) sin 2aλ0n

x∫
0

q(t)dt+

(
ω2 (x)−

1

2
βdnx

)
cos 2aλ0n

 cosλ0nx

λ0n

+o

(
exp (|τ |x)

λ0n

)
, x > a.

(14)
Denote

An = 1− 1

2
β sin 2aλ0n, Bn =

1

2
β
(
1 + cos 2aλ0n

)
,
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Cn (x) = ω0 (x)− dnx− 1

4

(
1− 2β2

)
cos 2aλ0n

x∫
0

q(t)dt+

(
ω2 (x)−

1

2
βdnx

)
sin 2aλ0n,

Dn (x) = ω1 (x) +
1

2
βdnx+

1

4
(1− 2β2) sin 2aλ0n

x∫
0

q(t)dt+

(
ω2 (x)−

1

2
βdnx

)
cos 2aλ0n,

in this case for x > a
φn (x) = An cosλ

0
nx+Bn sinλ

0
nx+

+Cn(x)
sinλ0nx

λ0n
+Dn (x)

cosλ0nx

λ0n
+ o

(
exp (|τ |x)

λ0n

)
.

Theorem 2. The following asymptotics expression is provided

x
j(n)
n =

(
j − 1

2

)
π

λon
+

h+
1

2

xj(n)
n∫
0

q(t)dt− dnx
j(n)
n

 1

(λon)
2+

+o

(
1

(λon)
2

)
, x

j(n)
n ∈ (0, a) ,

(15)

x
j(n)
n =

(
j − 1

2

)
π

λon
+

1

λon
arctan

(
Bn

An

)
−

−

Bn

A2
n

Dn

(
x
j(n)
n

)
−
Cn

(
x
j(n)
n

)
An

 1

(λon)
2 + o

(
1

(λon)
2

)
, x

j(n)
n ∈ (a, π) ,

(16)

for sufficiently large n, uniformly with respect to j(n).

Proof. Use the asymptotic formulas for the case x < a and x > a respectively (13) and
(14) to get

0 = φ
(
xj(n)n , λn

)
= cosλonx

j(n)
n +

h+
1

2

xj(n)
n∫
0

q(t)dt− dnx
j(n)
n

 sinλonx
j(n)
n

λon
+

+o

exp
(
|τ |xj(n)n

)
λ0n

 , xj(n)n ∈ (0, a) ,

0 = φ
(
xj(n)n , λn

)
= An cosλ

0
nx

j(n)
n +Bn sinλ

0
nx

j(n)
n + Cn(x

j(n)
n )

sinλ0nx
j(n)
n

λ0n
+

+Dn

(
xj(n)n

) cosλ0nx
j(n)
n

λ0n
+ o

exp
(
|τ |xj(n)n

)
λ0n

 , xj(n)n ∈ (a, π) ,
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and so

tan
(
λonx

j(n)
n +

π

2

)
=

h+
1

2

xj(n)
n∫
0

q(t)dt− dnx
j(n)
n

 1

λon
+ o

(
1

λ0n

)
, xj(n)n ∈ (0, a) , (17)

tan
(
λonx

j(n)
n +

π

2

)
=
Bn

An
−
{

Bn

(An)2
Dn

(
x
j(n)
n

)
− 1

An
Cn(x

j(n)
n )

}
1

λon
+

+o

(
1

λ0n

)
, x

j(n)
n ∈ (a, π) ,

(18)

if we apply the identity

arctanα− arctanβ = arcsin

(
|α− β|

√
1 + α2

√
1 + β2

)
,

we get the asymptotic formulae (15) and (16) for the nodal points from the equations (17)
and (18). ◀

It is clear from the expression of {λon}n≥1 that {hn}n≥1 is a real and bounded
sequence. Since sup

n
|hn| ≤ M < +∞, let’s choose subsequence {nk}k≥0 ⊂ N as

lim
k→∞

hnk
= ho < +∞. Let’s define the set ℜ =

{
rπ : r =

p

q
, p < q, p, q ∈ N

}
. It is clear

that the set ℜ is dense in the range (0, π) and consists of irrational numbers in the form
rπ, r ∈ (0, 1) ∩Q, in this range.

Let’s take any point a ∈ ℜ ⊂ (0, π) and choose the sequence {nk}k≥0 with nk =

qmk,

(
mk ∈ N, lim

k→∞
mk = +∞

)
. In this case, since sin 2aλonk

= sin 2ahnk
, cos 2aλonk

=

cos 2ahnk
and

1

λonk

=
1

nk
− hnk

(nk)
2 + o

(
1

(nk)
2

)
,

we get following asymptotic formulae for the nodal points of the problem L, for k → ∞
uniformly in j(nk):

x
j(nk)
nk =

(
j(nk)−

1

2

)
π

nk
−

(
j(nk)−

1

2

)
π

(nk)2
hnk

+

+
[
h+Q

(
x
j(nk)
nk

)
− dnk

x
j(nk)
nk

] 1

(nk)
2 + o

(
1

(nk)
2

)
, x

j(nk)
nk ∈ (0, a) ,

xj(nk)
nk

=

(
j(nk)−

1

2

)
π

nk
−

(
j(nk)−

1

2

)
π

(nk)2
hnk

+
1

nk
arctan

(
Bnk

Ank

)
−

− hnk

(nk)2
arctan

(
Bnk

Ank

)
−
{

Bnk

(Ank
)2
Dnk

(
xj(nk)
nk

)
− 1

Ank

Cnk

(
xj(nk)
nk

)} 1

(nk)2
+
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+o

(
1

(nk)
2

)
, xj(nk)

nk
∈ (a, π) .

Let Xo (L) =
{
x
j(nk)
nk : nk = 1, 2, ..., j (nk) = 1, nk

}
be a subsequence of the numbers

x
j(n)
n that is dense on (0, π). According to above result, the existence of such set is

obvious.

Theorem 3. For x ∈ (0, π), let Xo (L) ⊂ X (L) and lim
k→∞

x
j(nk)
nk = x. Then, for any

point a ∈ ℜ the following limits exist and are finite:

f1 (x) := lim
k→∞

[
nkx

j(nk)
nk

−
(
j (nk)−

1

2

)
π

]
, xj(nk)

nk
∈ (0, a) , (19)

g1 (x) := limnk
k→∞

nkxj(nk)
nk

−
(
j (nk)−

1

2

)
π +

(
j (nk)−

1

2

)
π

nk

 , (20)

xj(nk)
nk

∈ (0, a)

f2 (x) := lim
k→∞

[
nkx

j(nk)
nk

−
(
j (nk)−

1

2

)
π

]
, xj(nk)

nk
∈ (a, π), (21)

g2 (x) := limnk
k→∞

[
nkx

j(nk)
nk −

(
j (nk)−

1

2

)
π − arctan

(
Bnk

Ank

)
+

+

(
j (nk)−

1

2

)
π

nk
hnk

]
, x

j(nk)
nk ∈ (a, π),

(22)

and
f1 (x) = −xho, x ∈ [0, a) ,

g1 (x) = h+
1

2

x∫
0

q(t)dt− dox, x ∈ [0, a) ,

f2 (x) = −xho + arctan

(
Bo

Ao

)
, x ∈ (a, π] ,

g2 (x) = −ho arctan
(
Bo

Ao

)
− Bo

A2
o

Do (x) +
1

Ao
Co (x, ) , x ∈ (a, π] ,

where

Ao = limAnk

k→∞
= 1− 1

2
β sin 2aho, Bo = limBnk

k→∞
=

1

2
β (1 + cos 2aho) ,

Co (x) = limCnk

k→∞

(
xj(nk)
nk

)
= ωo (x)− dox− 1

4
(1− 2β2) cos 2aho

x∫
0

q(t)dt+



R. Amirov 51

+

(
ω2 (x)−

1

2
βdox

)
sin 2aho,

Do (x) = limDnk

k→∞

(
xj(nk)
nk

)
= ω1 (x) +

1

2
βdox+

+
1

4
(1− 2β2) sin 2aho

x∫
0

q(t)dt+

(
ω2 (x)−

1

2
βdox

)
cos 2aho,

do =
1

π cosπho +
1

2
β [π sinπho + (2a− π) sin (2a− π)ho]

{(ωo (π) +H) sinπho+

+

(
1

2
βH − ω1 (π)

)
cosπho +

(
ω2 (π)−

1

2
βH

)
cos (2a− π)ho + ω3 (π) sin (2a− π)ho

}
.

Proof. Let a ∈ ℜ ⊂ (0, π) any point. For each fixed x ∈ (0, π) \ {a} , there exists a se-

quence
(
x
j(n)
n

)
n≥1

converges to x. For nk = q.mk, mk ∈ N, the subsequence
(
x
j(nk)
nk

)
n≥1

converges also to x. Therefore we get from the asymptotics in Theorem 2 (15) and (16),
the limits (19)-(21) exists and are finite. ◀

Let us now state a uniqueness theorem and present a constructive procedure for
solving inverse nodal problem.

Theorem 4. Let Xo (L) ⊂ X (L) be a subset of nodal points which is dense in (0, π) .
Then, for any a ∈ ℜ the specification of Xo (L) uniquely determines the potential q(x)−⟨q⟩
a.e. on (0, π) and the coefficients h and H of the boundary conditions and coefficient β.
The potential q(x)−⟨q⟩ and the numbers h,H and β can be constructed via the following
algorithm.

1. For each x ∈ (0, π), we choose a sequence
{
x
j(nk)
nk

}
⊂ Xo (L) such that lim

n→∞
x
j(n)
n =

x.
2.From (20), we find the function g1 (x) and calculate value for g1 (x) at x = 0, i.e.

h = g1 (0) . (23)

3. From (19) and (21) we find

β =
tan (f (a+ 0)− f (a− 0))

2 [cos aho + tan (f (a+ 0)− f (a− 0)) sin aho] cos aho
, (24)

where

f(x) =

{
f1 (x) , x ∈ [0, a) ,
f2 (x) , x ∈ (a, π] .

4. The function q(x)− ⟨q⟩ can be determined as

q(x)− ⟨q⟩ = 2g′1 (x)+
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+

2(H + h)

[
sinπho ++

1

2
β cosπho

]
− 1

2
β (H − h) cos(2a− π)ho

π

[
cosπho +

1

2
β sinπho

]
+

1

2
β(2a− π) sin(2a− π)ho

, x ∈ [0, a) , (25)

where

⟨q⟩ = 1

π

[
cosπho +

1

2
β sinπho

]
+

1

2
β(2a− π) sin(2a− π)ho

×

×
{[

−1

2
β (sinπho + cosπho +

+
β

2
cos(2a− π)ho

)
+

1

2

(
1− β2

)
sin(2a− π)ho

] a∫
0

q(t)dt+

+

[
sinπho + β cosπho +

1

2
β cos(2a− π)ho

] π∫
0

q(t)dt

 ,

q(x)− ⟨q⟩ = 1

1 +
1

2
β sin 2aho −

(
1

2
− β2

)(
cos 2aho +

1

2
β sin 2aho

)×

×

{
2

(
1− 1

2
β sin 2aho

)2

g′2 (x) −

−
2(H + h)

[
sinπho +

1

2
β cosπho

]
− 1

2
β (H − h) cos(2a− π)ho

π

[
cosπho +

1

2
β sinπho

]
+

1

2
β(2a− π) sin(2a− π)ho

 , x ∈ (a, π] ,

(26)

where

⟨q⟩ =

[
1 +

1

2
β sin 2aho −

(
1

2
− β2

)(
cos 2aho +

1

2
β sin 2aho

)]−1

π

[
cosπho +

1

2
β sinπho

]
+

1

2
β(2a− π) sin(2a− π)ho

×

×
{[

−1

2
β(sinπho + cosπho +

+
β

2
cos(2a− π)ho) +

1

2

(
1− β2

)
sin(2a− π)ho

] a∫
0

q(t)dt+

+

[
sinπho + β cosπho +

1

2
β cos(2a− π)ho

] π∫
0

q(t)dt

 .
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Proof. Formulas (23), (24), (25) and (26) can be derived from (19), (20), (21) and (22)
step by step. We obtain the following reconstruction procedure:

i) Taking value for g1 (x) at x = 0, then it yields h = g1 (0) .
ii) Using the expression of the f(x) function, the coefficient of β is found with the

formula (7).
iii) After hand β are reconstructed on take derivatives of the functions gi (x) , (i =

1, 2), we have (25) and (26). ◀

Let the function ψ (x, λ) be the solution of (4) under the initial conditions ψ (π, λ) =
1, ψ′ (π, λ) = −H, and discontinouty conditions (5). İt is clear that ψ (x, λn) =
βnφ (x, λn) , where βn = ψ

′
(0, λn) .

To complete the proof, consider a sequence
{
x
j(n)
n

}
⊂ Xo (L) that converges to π

and write equation (4) for ψ (x, λn) and ψ̃
(
x, λ̃n

)
as follows

−ψ̃
′′
(
x, λ̃n

)
+ q(x)ψ̃

(
x, λ̃n

)
= λ̃nψ̃

(
x, λ̃n

)
,

−ψ
′′
(x, λn) + q(x)ψ (x, λn) = λnψ (x, λn) .

If these equations are (i): Multiplied by ψ (x, λn) and ψ̃
(
x, λ̃n

)
, respectively; (ii):

Subtracted from each other and (iii): Integrated over the interval
(
x
j(n)
n , π

)
, the equality

ψ′ (π, λn) ψ̃
(
π, λ̃n

)
− ψ̃!

(
x, λ̃n

)
ψ (π, λn) =

(
λn − λ̃n

) π∫
x
j(n)
n

ψ̃
(
x, λ̃n

)
ψ (x, λn) dx

is obtained. Using (8), we get the following estimate for sufficiently large n

H − H̃ =
[
2
(
dn − d̃n

)
+ o(1)

] π∫
x
j(n)
n

ψ̃
(
x, λ̃n

)
ψ (x, λn) dx.

Since the sequences (dn) and
(
d̃n

)
are bounded, then H = H̃. This completes the

proof.

Corollary 1. Let a =
π

2
and H = ∞. Then ho = −α

π
= − 1

π
arctan

(
2

β

)
. In this case,

we get the following equalities:

1. xjn =

(
j − 1

2

)
π

n
+

α

πn

(
j − 1

2

)
π

n
+

−c0xjn + h+
1

2

xj
n∫

0

q(t)dt

 1

n2
+ o

(
1

n2

)
,

xjn ∈
(
0,
π

2

)
, n = 2m,
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xjn =

(
j − 1

2

)
π

n
+

α

πn

(
j − 1

2

)
π

n
+

−c1xjn + h+
1

2

xj
n∫

0

q(t)dt

 1

n2
+ o

(
1

n2

)
,

xjn ∈
(
0,
π

2

)
, n = 2m− 1,

xjn =

(
j − 1

2

)
π

n
+

α

(
j − 1

2

)
π

πn2
+

1

n
arctan

(
1

2
β

)
+

α arctan

(
1

2
β

)
πn2

−

−

1

2
βB(0)

(
xjn
)
−A(0)

(
xjn
)

n2
+ o

(
1

n2

)
, xjn ∈

(π
2
, π
)
, n = 2m,

xjn =

(
j − 1

2

)
π

n
+

α

(
j − 1

2

)
π

πn2
+

1

n
arctan

(
1

2
β

)
+

α arctan

(
1

2
β

)
πn2

−

−

1

2
βB(1)

(
xjn
)
−A(1)

(
xjn
)

n2
+ o

(
1

n2

)
, xjn ∈

(π
2
, π
)
, n = 2m− 1,

where

A(t) (x) =
1

A(t)

{
ω0 (x)− xct − (−1)

t
sinα

(
ω2 (x)−

π − x

2
βct

)
− (−1)

t
ω3 cosα

}
,

B(t) (x) =
1

A(t)

{
ω1 (x)−

x

2
βct + (−1)

t
cosα

(
ω2 (x)−

π − x

2
βct

)
− (−1)

t
ω3 sinα

}
,

ct =
1

π

√
1 +

(
1

2
β

)2


βω1 (π)− 2ω0 (π)

2

√
1 +

(
1

2
β

)2
+ (−1)

t
ω2 (π)

 ,

A(t) = 1 + (−1)
t
cosα = 1 +

(−1)
t
β

2

√
1 +

(
1

2
β

)2
, t = 0, 1.

2. For x <
π

2

lim
n→∞

(
nxjn −

(
j − 1

2

)
π

)
def
= f1 (x) ,

lim
n→∞

[
nxjn −

(
j − 1

2

)
π − α

π

(
j − 1

2

)
π

n

]
def
= gt1 (x) ,

for x >
π

2

lim
n→∞

(
nxjn −

(
j − 1

2

)
π

)
def
= f2 (x) ,
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lim
n→∞

[
nxjn −

(
j − 1

2

)
π −

α
(
j − 1

2

)
π

πn
− arctan

(
1

2
β

)]
n

def
= gt2 (x) ,

and
f1 (x) =

α

π
x, x ∈

[
0,
π

2

)
, (27)

gt1 (x) = −ctx+ h+
1

2

x∫
0

q(t)dt, x ∈
[
0,
π

2

)
, (28)

f2 (x) =
α

π
x+ arctan

(
1

2
β

)
, x ∈

(π
2
, π
]
,

gt2 (x) =
α

π
arctan

(
1

2
β

)
+A(t) (x)− 1

2
βBt (x) , x ∈

(π
2
, π
]
. (29)

3.From (28), we find the function gt1 (x) and calculate value for gt1 (x) at x = 0, i.e.

h = gt1 (0) .

From (27), we find the function f1 (x) and calculate value for f1 (x) at x = 1, i.e.

β =
2

tan (πf1 (1))
.

4. From (28) and (29). The function q(x)− ⟨qt⟩ can be determined as

q(x)−
〈
qt
〉
= 2

(
gt1 (x)

)′
+

gt1 (0)

π

[
1 + 2

(
1

2
β

)2
]
(−1)

t
β −

√
1 +

(
1

2
β

)2
 , x ∈

[
0,
π

2

)
,

where

⟨qt⟩ = − 2

π

[
1 + 2

(
1

2
β

)2
]
1

2
β

(β − 1)− 3 (−1)
t

√
1 +

(
1

2
β

)2
 a∫

0

q(t)dt+

+

1
2
+

(
1

2
β

)2

− (−1)
t
β

√
1 +

(
1

2
β

)2
 π∫

0

q(t)dt

 ,

q(x)− ⟨qt⟩ =

2

√
1 +

(
1

2
β

)2

+ (−1)
t
β

 (gt2 (x))
′

√
1 +

(
1

2
β

)2
(
1 + 2

(
1

2
β

)2
)

− (−1)
t
β

(
1 +

(
1

2
β

)2
)+

+
gt1 (0)

π

[
1 + 2

(
1

2
β

)2
]
(−1)

t
β −

√
1 +

(
1

2
β

)2
 , x ∈

(π
2
, π
]
,
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where

〈
qt
〉
= − 2

π

[
1 + 2

(
1

2
β

)2
] 2

[
1 +

(
1

2
β

)2
]
+ (−1)

t
β

√
1 +

(
1

2
β

)2

1 + 2

(
1

2
β

)2

− (−1)
t
β

√
1 +

(
1

2
β

)2
×

×

1

2
β

(β − 1)− 3 (−1)
t

√
1 +

(
1

2
β

)2
 a∫

0

q(t)dt+

+

1
2
+

(
1

2
β

)2

− (−1)
t
β

√
1 +

(
1

2
β

)2
 π∫

0

q(t)dt

 .

Corollary 2. In the (1)-(3) problem, if the interval [0, 1] is taken instead of the interval
[0, π], it must be a ∈ (0, 1) ∩Q for the inverse nodal problem to be solvable.

Corollary 3. In the (1)-(3) problem, if the interval [0, T ] is taken instead of the interval

[0, π], it must be
a

T
∈ (0, 1) ∩Q for the inverse nodal problem to be solvable.
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