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1. Introduction

Consider the following Sturm-Liouville problem L := L(q(x))

ℓ [y] := −y′′ + q(x)y = λy, x ∈
(
0,
π

2

)
∪
(π
2
, π
)
, (1)

with the boundary conditions

U(y) := y′(0) = 0, V (y) := y(π) = 0, (2)

and conditions at the point x = π
2 ,

I(y) :=

{
y(π2 + 0) = y(π2 − 0) ≡ y(π2 ),

y′(π2 + 0)− y′(π2 − 0) = −αλy(π2 ),
(3)
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where q(x) is real-value function in W 1
2 (0, π) and α > 0 ; λ is spectral parameter. It is

known [9] that the problem has a discrete spectrum consisting of simple real and bounded
below eigenvalues.

Notice that, we can understand problem (1), (3) as studying the equation

−y′′ + q(x)y = λρ(x)y, x ∈ (0, π) , (4)

when ρ(x) = 1 + αδ(x − π
2 ), where δ(x) is the Dirac function (see [1]). In this aspect,

various spectral problems for the equation (4) have been investigated in [7].
Here we will confine ourselves to the problem of recovering L from the given sets

of spectral characteristics. This paper can be viewed as a continuation of [9], in which
we gave a self-adjoint operator-theoretic formulation in an appropriate produce space
L2[0, π]⊕C for this problem, obtained some properties of the spectrum and proved some
uniqueness theorems for the inverse problems of L.

Boundary value problems with discontinuities within the interval often appear in
mathematics, mechanics, physics, geophysics and other branches of naturel sciences.
Usually,such problems involve discontinuous material properties. For example, the discon-
tinuous Sturm-Liouville problem (1)-(3) appears in the one-dimensional wave equation
corresponding to a string with finitely many embedded point masses (see [2]), More-
over, boundary valve problems with discontinuities in an interior point also appear in
geophysical models for oscillations of the Earth (see [6]). Here the main discontinuity is
coursed by reflection of the shear waves at the base of the cruck. The inverse problem
of reconstructing the material properties of a medium from data collected outside of the
medium is of central importance.

Inverse Sturm-Liuville problems with interior point conditions depending on the spec-
tral parameter are less to investigate, and nowadays there are only a rather limited
number of papers in this direction (see [5], [8], [10]-[12], and the references therein).

In the present paper, we prove some uniqueness theorems three inverse problems of
recovering L from the Weyl function, or from spectral data, or from two spectra. The
obtained results here are natural generalizations of the well-known results on the classical
inverse problems since the interior point conditions (3) involve the spectral parameter.

2. Formulation of the Inverse Problem. Uniqueness
Theorem

In this section, we give the spectral properties of the boundary value problem L and state
the relationship between these spectral characteristics. We also formulate the inverse
problem of reconstructing the problem L: from the Weyl function, from the spectral
data, and from two spectra.

Let φ(x, λ) , ψ(x, λ) be the solutions of equation (1) under the initial conditions

φ(0, λ) = 1, φ
′
(0, λ) = 0; ψ(π, λ) = 0, ψ

′
(π, λ) = 1, (5)

and the interior point conditions (3) respectively. For each fixed x ∈
(
0, π2

)
∪
(
π
2 , π

)
the

functions φ(x, λ) , ψ(x, λ) together with their derivatives with respect to x are entire
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in λ. For convenience, we denote ρ =
√
λ = σ + iτ . It is known [9] that the following

asymptotic estimates hold uniformly with respect x ∈ (0, π), as |ρ| → ∞

φ(x, λ) = cos ρx+ sin ρx
2ρ

x∫
0

q(t)dt+O( 1
ρ2 exp(|τ |x)), x < π

2 ,

φ(x, λ) = −α
2 ρ sin ρx+ α

2 ρ sin ρ(π − x) + cos ρx[1 + α
4

x∫
0

q(t)dt]

+α
4 cos ρ(π − x)[

π∫
π/2

q(t)dt−
π/2∫
0

q(t)dt] +O( 1ρ exp(|τ |x)), x >
π
2 ,

(6)


ψ(x, λ) = − sin ρ(π−x)

ρ + cos ρ(π−x)
2ρ2

π∫
x

q(t)dt+O( 1
ρ3 exp(|τ | (π − x))), x > π

2 ,

ψ(x, λ) = −α
2 cos ρx− α

2 cos ρ(π − x)− α
4ρ [sin ρx+ sin ρ(π − x)]

π/2∫
x

q(t)dt]

+O( 1
ρ2 exp(|τ | (π − x))), x < π

2 .

(7)

Define the Wronskians determinant < y, z > (x) := (yz′ − y′z)(x) for the functions
y(x) and z(x) which are all continuously differentiable on (0, π)\(π2 ). It is easy to verify
from (3) and (5) that < φ,ψ > (π2 − 0, λ) =< φ,ψ > (π2 + 0, λ), which implies that
the Wronskians < φ,ψ > (x, λ) is continuous on (0, π). From this fact and by virtue of
Liouville’s formula (see [3, p. 83]), we infer that < φ(x, λ), ψ(x, λ) > does not depend on
x. Denote

∆(λ) =< φ(x, λ), ψ(x, λ) > . (8)

Substituting x = 0 and x = π into (8), one has ∆(λ) = −V (φ) = U(ψ). Let {λn}∞n=1

be the zeros of the function ∆(λ). Then the numbers {λn}∞n=1 coincide with the eigen-
values of the problem L defined by (1)-(3) and therefore the function ∆(λ) is called the
characteristic function of L. The functions φ(x, λn), ψ(x, λn) are eigenfunctions, and
there exists a sequence {βn} such that

ψ(x, λn) = βnφ(x, λn), β ̸= 0,

where βn = ψ(0, λn). Throughout this paper we use the notation

αn =

π∫
0

φ2(x, λn)dx+ αφ2
(π
2
, λn

)
,

as the norming constant corresponding to eigenvalue λn. The data Ω = {λn, αn}∞n=1 are
called the spectral data associated with problem (1)-(3).

Lemma 1. The following statements hold.
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i. For each eigenvalue λn, we have

∆̇(λn) = αnβn,

where ∆̇(λn) =
d∆(λ)
dλ .

ii. Let λn be n th eigenvalue of the problem (1)-(3). Let {ρ0n}∞n=1 be zeros of the entire
function

∆0(λ) =
α
2 ρ sin ρπ.

Then as n→ ∞

ρn = n− 1 +
1

πn
(ω1 + (−1)n−1ω2) +

ξn
n
, ξn ∈ ℓ2,

where ω1 = 2
α + 1

2

π∫
0

q(t)dt , ω2 = 1
2 [

π/2∫
0

q(t)dt−
π∫

π/2

q(t)dt], (see [2]).

iii. Fix δ > 0. Then there exists a constant Cδ such that

|∆(λ)| > Cδ |ρ|2 exp(|τ |π), ρ ∈ Gδ, |ρ| ≥ ρ∗, (9)

for sufficiently large ρ∗, where Gδ = {ρ :
∣∣ρ− ρ0n

∣∣ ≥ δ, n ≥ 1}.

iv. The equality

αn = α0
n + o(1) , n→ ∞

holds. Here

α0
n =

π∫
0

φ2(x, λ0n)dx+ αφ2(π2 , λ
0
n).

We define the Weyl function by

M(λ) =
ψ(0, λ)

∆(λ)
, (10)

Here the function ψ(0, λ) is the characteristic function of the boundary value problem
for equation (1) subject to the boundary conditions y(0) = V (y) = 0 and the point
conditions (3). Let {µn}∞n=1 be the zeros of the entire function ψ(0, λ). Obviously, ψ(0, λ)
and ∆(λ) have no common zeros. Thus, the Weyl function M(y) is meromophic with in
{λn}∞n=1 and zeros in {µn}∞n=1.

The following lemma provides the relationship among the spectral characteristics of
L: the Weyl function M(λ), the spectral data Ω and two spectra {λn, µn}∞n=1.

Lemma 2. LetM(λ), Ω and ∆(λ) be defined as above. Then the following representation
holds

M(λ) =

∞∑
n=1

1

αn(λ− λn)
. (11)
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Moreover, if condition (9) holds, then

∆(λ) = −πα(λ1 − λ)

∞∏
n=2

λn − λ

ρn
. (12)

We omit the proofs of Lemmas 1-2 since they are similar to those for the classical
Sturm-Liouville operators (see [4]).

We shall consider the following inverse problems of recovering L:
(i) - Inverse problem 1 : Give the Weyl function M(λ), construct q(x).
(ii) - Inverse problem 2 : Given the spectral data {λn, µn}∞n=1, construct q(x).
(iii) - Inverse problem 3 : Suppose (9) holds, given two spectra {λn, µn}∞n=1, construct
q(x).

This gives us the desired uniqueness result for the solutions of the inverse problems
above. Moreover, according to (10), (11) and (12), the inverse problems of recovering
the L from the spectral data and from two spectra are particular inverse problem of
recovering the L from Weyl function. Consequently, inverse problems 1-3 are equivalent.

First, let us prove the uniqueness theorems for the solutions of problems (i)-(iii). For

this purpose, we agree to consider together with L a boundary value problem L̃ of the
same of, but with different coefficient q̃(x).). If in the following a certain symbol e denotes
an object related to L, then the corresponding symbol ẽ with tilde denotes the analogous
object related to L̃.

Theorem 1. If M(λ) = M̃(λ), then L = L̃. Thus, the specification of the Weyl function
M(λ) uniquely determines L.

Proof. Let us define the matrix P (x, λ) = [Pjk(x, λ)]j,k=1,2 by the formula

P (x, λ)

(
φ̃(x, λ) Φ̃(x, λ)

φ̃′(x, λ) Φ̃(x, λ)
′

)
=

(
φ̃(x, λ) Φ̃(x, λ)

φ̃′(x, λ) Φ̃′(x, λ)

)
,

where

Φ(x, λ) =
ψ(x, λ)

∆(x, λ)
= S(x, λ) +M(λ)φ(x, λ), (13)

and S(x, λ) is the solution of equation (1) with the initial conditions S(x, λ) = 0,
S′(0, λ) = 1 and the point conditions (3). The function Φ(x, λ) is called the Weyl solution
for L. By virtue of (13), we calculate{

Pj1(x, λ) = φ(j−1)(x, λ)Φ̃′(x, λ)− Φ(j−1)(x, λ)φ̃′(x, λ),
Pj2(x, λ) = Φ(j−1)(x, λ)φ̃(x, λ)− φ(j−1)(x, λ)φ̃(x, λ),

(14)

and {
φ(x, λ) = P11(x, λ)φ̃(x, λ) + P12(x, λ)φ̃

′(x, λ),

Φ(x, λ) = P11(x, λ)Φ̃(x, λ) + P12(x, λ)Φ̃
′(x, λ).

(15)
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Taking (6), (7) and (9) into account, we infer that

|P11(x, λ)− 1| ≤ Cδ |ρ|−1
, |P12(x, λ)− 1| ≤ Cδ |ρ|−1

, ρ ∈ Gδ, |ρ| ≥ ρ∗, (16)

where Gδ is defined in (9) and Cδ is a constant.

On the other hand according to (10) and (14){
P11(x, λ) = φ(x, λ)S̃′(x, λ)− S(x, λ)φ̃′(x, λ) + (M̃(λ)−M(λ))φ(x, λ)φ̃′(x, λ),

P12(x, λ) = S(x, λ)φ̃(x, λ)− φ(x, λ)S̃(x, λ) + (M(λ)− M̃(λ))φ′(x, λ)φ̃(x, λ).

Since M(λ) = M̃(λ), it follows that for each x the functions P1k(x, λ), k = 1, 2 are entire
in λ. With the help of (16) and well-known Liouville’s theorem, this yields P11(x, λ) ≡ 1,

P12(x, λ) ≡ 0. Substituting into (15), we obtain φ(λ) = φ̃(λ), Φ(λ) = Φ̃(λ) for all x ∈
(0, π)\

{
π
2

}
and λ. Taking this into account, from (1) we obtain q(x) = q̃(x) a.e. on (0, π).

Consequently, L = L̃. ◀

Theorem 2. If λn = λ̃n, αn = α̃n, n = 1, 2..., L = L̃. Thus the specification of the
spectral data Ω = {λn, αn}∞n=1 uniquely determines the operator L.

Proof. Under the hypothesis of the theorem we obtain, in view of (11), thatM(λ) = M̃(λ)

on consequently by Theorem 1, L = L̃. ◀

Theorem 3. If λn = λ̃n and µn = µ̃n, n = 1, 2..., then L = L̃. Thus the specification
of two spectra {λn, µn}∞n=1 uniquely determines L.

Proof. It is obvious that characteristic functions ∆(λ) and ψ(0, λ) are uniquely deter-

mined by the sequences {λn}∞n=1 and {µn}∞n=1, respectively. If λn = λ̃n, µn = µ̃n, n =

1, 2, ...,then ∆(λ) = ∆̃(λ), ψ(λ) = ψ̃(λ). Together with (10) this yields M(λ) = M̃(λ).

By Theorem 1 we obtain L = L̃. ◀
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