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Abstract. We prove upper bounds for Berezin symbols and Berezin numbers of op-
erators, with a special emphasis on the quadratic weighted operator geometric mean
A1ⓈνA2 of operators A1 ∈ B−1(H (Ω)) and A2 ∈ B(H (Ω)) defined by A1ⓈνA2 =∣∣|A2A

−1
1 |νA1

∣∣2 , for ν ≥ 0. In particular, we prove some upper bounds for Berezin sym-
bols and Berezin numbers of some self-adjoint operators on reproducing kernel Hilbert
spaces H = H (Ω) over some suitable sets. Moreover, we estimate the best possible
constant in some generalized Hardy-Hilbert inequality for the series.

Keywords: Berezin symbol, Berezin number, self-adjoint operator, reproducing kernel

Mathematics Subject Classification (2020): 47A30, 47B35, 47B20

1. Introduction

Let B(H) stand for the Banach algebra of all bounded linear operators on a complex
Hilbert space H with inner product ⟨., .⟩. An operator A ∈ B(H) is call self-adjoint if
A∗ = A, where A∗ denotes the adjoint of A. It is easy to see that an operator A is
self-adjoint if and only if ⟨Ax, x⟩ ∈ R := (−∞,∞) for all x ∈ H. An operator A ∈ B(H)
is called positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H. The spectrum σ(A) of an operator A is the
set of all λ ∈ C such that the operator λI −A does not have a bounded inverse.
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Recall that a reproducing kernel Hilbert space (shortly, RKHS) is a Hilbert space
H = H (Ω) consisting of complex-valued functions on some set Ω such that the evalu-
ation functionals φλ(f) = f(λ), λ ∈ Ω, are continuous on H and for any λ ∈ Ω there
exists fλ such that fλ(λ) ̸= 0. Then by the Riesz representation theorem for each λ ∈ Ω
there exists a unique function Kλ ∈ H such that

f(λ) = ⟨f,Kλ⟩ (1)

for all f ∈ H . The collection {Kλ : λ ∈ Ω} is called the reproducing kernel of the
space H . We say that the reproducing kernel Hilbert space admits the Ber-property
(in this case we will write H ∈ (Ber), if for any bounded linear operator A on H (Ω),

Ã(µ) = 0, ∀µ ∈ Ω, implies that A = 0, i.e., for the Berezin symbols of operators on H (Ω)
the uniqueness theorem holds, (i.e. the corresponding Berezin transform is injective). In
particular, the Hardy space H2(D), where D = {z ∈ C : |z| < 1} is the unit disc in C, the
Bergman space L2

a(D), the Dirichlet space D2(D) and the Fock space F (D) are RKHSs
with the property (Ber). A detailed presentation of the theory of RKHSs is given, for
instance, in Aronzajn [1], Saitoh [27] Halmos [18].

For any A ∈ B(H ), its Berezin symbol Ã is defined on Ω by (see Berezin [4], [5],
Nordgren and Rosenthal [25], Englisx [12] and Zhu [31])

Ã(λ) :=
〈
AK̂λ, K̂λ

〉
, λ ∈ Ω, (2)

where K̂λ = Kλ

∥Kλ∥H
is the normalized reproducing kernel of H and the inner product

⟨., .⟩ is taken with respect to the the RKHS H . The Berezin norm, Berezin set and
Berezin number of the operator A are defined respectively by

∥A∥Ber := sup
λ∈Ω

∥∥∥AK̂λ

∥∥∥ , (3)

Ber(A) := Range(Ã) =
{
Ã(λ) : λ ∈ Ω

}
, (4)

ber(A) := sup
λ∈Ω

∣∣∣Ã(λ)∣∣∣ . (5)

It is clear that ber(A) ≤ ∥A∥Ber ≤ ∥A∥, Ber(A) ⊂W (A) and ber(A) ≤ w(A), where

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1} (6)

is the numerical range of the operator A and

w(A) := sup
∥x∥=1

|⟨Ax, x⟩| (7)

is its numerical radius.
Let Range(A) and ker(A) denote respectively the range space and the null space

of the operator A ∈ B(H ). Then A is called a partial isometry if A|(ker(A))⊥ is an
isometry. It is also well-known that any operator A ∈ B(H ) admits a unique polar

decomposition given by A = VA|A|, where VA is a partial isometry, |A| := (A∗A)
1
2 ,
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ker(VA) = ker(|A|) = ker(A) and ker(V ∗
A) = ker(A∗). Two operators B and A in B(H )

are said to have similar positive parts if there exists a unitary operator U ∈ B(H ) such
that U |A| = |B|U . In this respect, to our best knowledge, E. Ko [24] is the first who
investigated operators having similar positive parts. In particular, Theorem 4.1 in [24]
provides an expression for the polar decomposition of A when A∗ and A have similar
positive parts. E. Ko also discovered several connections between two operators if they
have similar parts. For example, similarity of operators preserves isometries (see Corollary
2.7 of [24]). The impact of the similarity of positive parts on local spectra of operators
is also studied in [24]. Following [26], let B−1(H ) be the class of all bounded linear
invertible operators on H . In 2016, Dragomir [9] introduced the concept of quadratic
weighted operator geometric mean of operators. Namely, for A1 ∈ B−1(H ) and A2 ∈
B(H ), the quadratic weighted operator geometric mean of {A1, A2} is defined by

A1ⓈνA2 =
∣∣|A2A

−1
1 |νA1

∣∣2 , for ν ≥ 0. (8)

Using this mean, he obtained some inequalities for certain class of operators. In 2018,
Dragomir [11] pursued his study in this direction and presented some Hölder type in-
equalities for the quadratic weighted operator geometric mean for some operators. In the
present article, we give upper bounds for Berezin symbols and Berezin numbers of some
self-adjoint operators, including the operator (A1ⓈνA2). Our paper is mainly motivated
by the work of Sahoo, Das and Mishra [26]. For related results the readers can consult
[2], [3], [6], [7], [9], [10], [16]-[14], [20], [21], [28]-[30].

2. Upper Bounds for the Berezin Number

The following result gives an upper bound for the Berezin number of the operator(
Tφ(A1ⓈνA2)T

∗
ψ

)
on the Hardy Hilbert space H2 = H2(D) of analytic functions f(z) =

∞∑
n=0

f̂(n)zn on the unit disc D = {z ∈ C : |z| < 1} for which
∞∑
n=0

|f̂(n)|2 = ∥f∥22 < ∞,

where f̂(n) = f(n)(0)
n! is the nth Taylor coefficient of f , and Tφ, Tψ (φ,ψ ∈ L∞(∂D)) are

the Toeplitz operators on H2 defined by Tφf = P+φf and Tψf = P+ψf , f ∈ H2, where
P+ : L2(∂D) → H2 is the Riesz orthogonal projection. The normalized reproducing

kernel of H2 is the function k̂λ(z) =

√
1−|λ|2

1−λz , λ ∈ D.
Let H∞ be the algebra of all bounded analytic functions on D with supremum norm.

Theorem 1. Let φ,ψ be two functions in H∞, and let A1 ∈ B−1(H2) and A2 ∈ B(H2)
be two positive operators such that A1 and A2 have similar positive parts, i.e., |A1| =
U∗|A2|U for some unitary operator U on H2. Further, let p, q > 1 with 1

p +
1
q = 1. Then

ber
(
Tφ(A1Ⓢ 1

p
A2)T

∗
ψ

)
≤ ∥φ∥∞ ∥ψ∥∞

(
1

p
∥A2∥2Ber +

1

q
∥A2U∥2Ber

)
. (9)

To prove this assertion, we shall need the following lemmas:
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Lemma 1. ([19]) Let a, b > 0, 0 ≤ m,n ≤ 1 and p, q > 1 be such that n +m = 1 and
1
p +

1
q = 1. Then, one has

(i) ambn ≤ ma+ nb ≤ (mar + nbr)
1
r , for r ≥ 1;

(ii) ab ≤ ap

p + bq

q ≤
(
apr

p + bqr

q

) 1
r

, for r ≥ 1.

Lemma 2. ([23]) Let a, b > 0 and p, q > 1 be such that 1
p +

1
q = 1. Then

ab+min

{
1

p
,
1

q

}(
a

p
2 − b

q
2

)2
≤ ap

p
+
bq

q
.

Lemma 3. ([26]) Let A1 ∈ B−1(H ) and A2 ∈ B(H ). Then for p, q > 1 with 1
p+

1
q = 1.

Then

˜A1Ⓢ 1
p
A2(λ) ≤

(
|̃A2|2(λ)

) 1
p
(
|̃A1|2(λ)

) 1
q

,

for all λ ∈ Ω. In particular,

Ã1ⓈA2(λ) ≤
(
|̃A2|2(λ)

) 1
2
(
|̃A1|2(λ)

) 1
2

,

for all λ ∈ Ω.

Lemma 2 is a actually a particular case of Lemma 5 in [26].

Proof. (Proof of Theorem 1.) Let A1 = V1|A1| and A2 = V2|A2| be the polar decompo-
sitions of A1 and A2, respectively. Since A1 and A2 have similar positive parts, we have
|A1| = U∗|A2|U and |A1|2 = U∗|A2|2U . By Lemmas 3 and 1, we have that∣∣∣ ˜Tφ(A1Ⓢ 1

p
A2)T ∗

ψ(λ)
∣∣∣ = ∣∣∣〈Tφ(A1Ⓢ 1

p
A2)T

∗
ψk̂λ, k̂λ

〉∣∣∣ = ∣∣∣〈(A1Ⓢ 1
p
A2)T

∗
ψk̂λ, T

∗
φk̂λ

〉∣∣∣ =
=
∣∣∣〈(A1Ⓢ 1

p
A2)ψ(λ)k̂λ, φ(λ)k̂λ

〉∣∣∣ = |ψ(λ)φ(λ)|
∣∣∣〈(A1Ⓢ 1

p
A2)k̂λ, k̂λ

〉∣∣∣ ≤
≤ |ψ(λ)φ(λ)|

(
|̃A2|2(λ)

) 1
p
(
|̃A1|2(λ)

) 1
q ≤

≤ |ψ(λ)φ(λ)|
(
1

p
|̃A2|2(λ) +

1

q
|̃A1|2(λ)

)
=

= |ψ(λ)φ(λ)|
(
1

p
|̃A2|2(λ) +

1

q
˜U∗|A2|2U(λ)

)
≤

≤ ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
|A2|k̂λ, |A2|k̂λ

〉
+

1

q

〈
|A2|Uk̂λ, |A2|Uk̂λ

〉)
=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
V ∗
2 V2|A2|k̂λ, |A2|k̂λ

〉
+

1

q

〈
V ∗
2 V2|A2|Uk̂λ, |A2|Uk̂λ

〉)
=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
V2|A2|k̂λ, V2|A2|k̂λ

〉
+

1

q

〈
V2|A2|Uk̂λ, V2|A2|Uk̂λ

〉)
=
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= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
A2k̂λ, A2k̂λ

〉
+

1

q

〈
A2Uk̂λ, A2|Uk̂λ

〉)
=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

∥∥∥A2k̂λ

∥∥∥2 + 1

q

∥∥∥A2Uk̂λ

∥∥∥2) .
Taking supremum over λ ∈ D, we thus have

ber
(
Tφ(A1Ⓢ 1

p
A2)T

∗
ψ

)
≤ ∥φ∥∞ ∥ψ∥∞

(
1

p
∥A2∥2Ber +

1

q
∥A2U∥2Ber

)
.

◀

The following corollary follows from Theorem 1 and Lemma 3.

Corollary 1. Let A1 ∈ B−1(H2) and A2 ∈ B(H2) be two positive operators. Let
p, q > 1 with 1

p +
1
q = 1 and let φ,ψ ∈ H∞. Then

ber
(
Tφ(A1Ⓢ 1

p
A2)T

∗
ψ

)
≤

≤ ∥φ∥∞ ∥ψ∥∞

[
1

p
∥A2∥2Ber +

1

q
∥A1∥2Ber −min

{
1

p
,
1

q

}
inf
λ∈D

(∥∥∥A2k̂λ

∥∥∥− ∥∥∥A1k̂λ

∥∥∥)2] .
Proof. In fact, by Lemma 3, we have∣∣∣〈Tφ(A1Ⓢ 1

p
A2)T

∗
ψk̂λ, k̂λ

〉∣∣∣ ≤
≤ ∥ψ∥∞ ∥φ∥∞

〈
|A2|2k̂λ, k̂λ

〉 1
p
〈
|A1|2k̂λ, k̂λ

〉 1
q ≤

≤ ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
|A2|2k̂λ, k̂λ

〉
+

1

q

〈
|A1|2k̂λ, k̂λ

〉)
−

−∥ψ∥∞ ∥φ∥∞ min

{
1

p
,
1

q

}(〈
|A2|2k̂λ, k̂λ

〉 1
2

+
〈
|A1|2k̂λ, k̂λ

〉 1
2

)2

,

where the last inequality follows from Lemma 2. Hence∣∣∣〈Tφ(A1Ⓢ 1
p
A2)T

∗
ψk̂λ, k̂λ

〉∣∣∣ ≤
≤ ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
|A2|k̂λ, |A2|k̂λ

〉
+

1

q

〈
|A1|k̂λ, |A1|k̂λ

〉)
−

−∥ψ∥∞ ∥φ∥∞ min

{
1

p
,
1

q

}(〈
|A2|k̂λ, |A2|k̂λ

〉 1
2

+
〈
|A1|k̂λ, |A1|k̂λ

〉 1
2

)2

=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
V ∗
2 V2|A2|k̂λ, |A2|k̂λ

〉
+

1

q

〈
V ∗
1 V1|A1|k̂λ, |A1|k̂λ

〉)
− ∥ψ∥∞ ×

×∥φ∥∞ min

{
1

p
,
1

q

}(〈
V ∗
2 V2|A2|k̂λ, |A2|k̂λ

〉 1
2

+
〈
V ∗
1 V1|A1|k̂λ, |A1|k̂λ

〉 1
2

)2

=
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= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
V2|A2|k̂λ, V2|A2|k̂λ

〉
+

1

q

〈
V1|A1|k̂λ, V1|A1|k̂λ

〉)
− ∥ψ∥∞ ×

×∥φ∥∞ min

{
1

p
,
1

q

}(〈
V2|A2|k̂λ, V2|A2|k̂λ

〉 1
2

+
〈
V1|A1|k̂λ, V1|A1|k̂λ

〉 1
2

)2

=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

〈
A2k̂λ, A2k̂λ

〉
+

1

q

〈
A1k̂λ, A1k̂λ

〉)
−

−∥ψ∥∞ ∥φ∥∞ min

{
1

p
,
1

q

}(〈
A2k̂λ, A2k̂λ

〉 1
2

+
〈
A1k̂λ, A1k̂λ

〉 1
2

)2

=

= ∥ψ∥∞ ∥φ∥∞

(
1

p

∥∥∥A2k̂λ

∥∥∥2 + 1

q

∥∥∥A1k̂λ

∥∥∥2)−

−∥ψ∥∞ ∥φ∥∞ min

{
1

p
,
1

q

}(∥∥∥A2k̂λ

∥∥∥+ ∥∥∥A1k̂λ

∥∥∥)2 .
Taking supremum over λ ∈ D, we obtain

ber
(
Tφ(A1Ⓢ 1

p
A2)T

∗
ψ

)
≤ ∥φ∥∞ ∥ψ∥∞

(
1

p
∥A2∥2Ber +

1

q
∥A1∥2Ber

)
−

−∥φ∥∞ ∥ψ∥∞ min

{
1

p
,
1

q

}
inf
λ∈D

(∥∥∥A2k̂λ

∥∥∥− ∥∥∥A1k̂λ

∥∥∥)2 ,
as desired. ◀

Since T ∗
ω k̂λ = ω(λ)k̂λ for every ω ∈ H∞ and ∥T ∗

ωU∥Ber ≤ ∥ω∥∞, the following fact is
an immediate consequence of Theorem 1.

Corollary 2. For any ω ∈ H∞, we have ∥ω∥∞ ≥
√
ber
(
A1Ⓢ 1

p
T ∗
ω

)
.

3. Power Inequalities for Berezin Symbols

In this section, we use some power inequalities for numbers and certain functional cal-
culus technique to estimate Berezin symbols and Berezin numbers of some self-adjoint
operators. Our next result gives some inequalities for Berezin symbols of some self-adjoint
operators on a reproducing kernel Hilbert space H = H (Ω).

Theorem 2. Let f be a continuous function defined on an interval J ⊂ (0,∞) and
f ≥ 0. If p, q > 1 with 1

p +
1
q = 1, then

sup
µ,η∈Ω

[
f̃(A)(µ)f̃(B)(η) + min

{
1

p
,
1

q

}
˜(

f
p
2 (A)− f

q
2 (A)

)2
(µ)

]
≤ 1

p
ber(fp(A)) +

1

q
ber(fq(B)) (10)

for all self-adjoint operators A and B in B(H ) with spectra contained in J .
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Proof. Let a, b > 0 and p, q > 1 such that 1
p +

1
q = 1. Then by Lemma 2, we have

ab+min

{
1

p
,
1

q

}(
a

p
2 − b

q
2

)2
≤ ap

p
+
bq

q
. (11)

Let x, y ∈ J . By considering that f(x) ≥ 0 for all x ∈ J and putting a = f(x) and
b = f(y) in (11), we get

f(x)f(y) + min

{
1

p
,
1

q

}(
f

p
2 (x)− f

q
2 (y)

)2
≤ fp(x)

p
+
fq(y)

q
, (12)

for all x, y ∈ J . Applying certain functional calculus arguments due to Kian [22], for an
operator A we get from (12) that

f(A)f(y) + min

{
1

p
,
1

q

}(
f

p
2 (A)− f

q
2 (y)IH

)2
≤ fp(A)

p
+
fq(y)

q
IH , (13)

whence

f(y)
〈
f(A)k̂H ,µ, k̂H ,µ

〉
+min

{
1

p
,
1

q

}〈(
f

p
2 (A)− f

q
2 (y)IH

)2
k̂H ,µ, k̂H ,µ

〉
≤ 1

p

〈
fp(A)k̂H ,µ, k̂H ,µ

〉
+
fq(y)

q
IH , (14)

for all µ ∈ Ω. Using the functional calculus once more to the self-adgoint operator B, we
get from (14) that 〈

f(A)k̂H ,µ, k̂H ,µ

〉〈
f(B)k̂H ,η, k̂H ,η

〉
+

+min

{
1

p
,
1

q

}〈(
f

p
2 (A)− f

q
2 (B)IH

)2
k̂H ,µ, k̂H ,µ

〉
≤

≤ 1

p

〈
fp(A)k̂H ,µ, k̂H ,µ

〉
+ ≤ 1

q

〈
fq(B)k̂H ,η, k̂H ,η

〉
,

for all µ, η ∈ Ω. This means that

f̃(A)(µ)f̃(B)(η) + min

{
1

p
,
1

q

}
˜(

f
p
2 (A)− f

q
2 (A)

)2
(µ) ≤

≤ 1

p
f̃p(A)(µ) +

1

q
f̃q(B)(µ) ≤ 1

p
ber(fp(A)) +

1

q
ber(fq(B)) ,

for all µ, η ∈ Ω, and hence

sup
µ,η∈Ω

[
f̃(A)(µ)f̃(B)(η) + min

{
1

p
,
1

q

}
˜(

f
p
2 (A)− f

q
2 (A)

)2
(µ)

]
≤

≤ 1

p
ber(fp(A)) +

1

q
ber(fq(B)) .

The proof is completed. ◀
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Das and Sahoo [8] proved in particular the following generalization of the classical Hardy-
Hilbert inequality.

Theorem 3. Let p, q > 1, 1
p +

1
q = 1, 0 < r, s ≤ 1, r + s = λ, an, bn ≥ 0, An :=

n∑
k=1

ak.

If 0 <
∞∑
n=1

apn <∞, then

∞∑
n=1

( ∞∑
m=1

mr− 1
q−1ns−

1
p

max {mλ, nλ}
Am

)p
<

(
qλ

rs

)p ∞∑
n=1

apn, (15)

where the constant factor
(
qλ
rs

)p
is the best possible.

As an application of Berezin symbols technique, we will prove some lower estimate

for the best constant
(
qλ
rs

)p
in Theorem 3.

Theorem 4. Let p > 1 be an integer. Then the best constant in inequality (15) satisfies
the following inequality (

qλ

rs

)p
>

1

2
+ 2(r−1−λ)p. (16)

Proof. Let N ≥ 2 and a1, a2, ..., aN be positive scalars. Then it follows from (15) that

2∑
n=1

(
2∑

m=1

mr− 1
q−1ns−

1
p

max {mλ, nλ}
Am

)p
<

(
qλ

rs

)p
(ap1 + ap2) , (17)

or equivalently,(
2∑

m=1

mr− 1
q−1

max {mλ, 1λ}
Am

)p
+

(
2∑

m=1

mr− 1
q−12s−

1
p

max {mλ, 2λ}
Am

)p
<

(
qλ

rs

)p
(ap1 + ap2) , (18)

that is

a1 + 2(r−
1
q−1−λ)p (a1 + a2)

p
<

(
qλ

rs

)p
(ap1 + ap2) . (19)

Let f be a continuous function on J and let x, y ∈ J . f(t) ≥ 0 for all t ∈ J . Let us put
a1 = f(x) and a2 = f(y). Then by using the method of the proof of Theorem 2, we have
from (19) that

fp(x) + 2(r−
1
q−1−λ)p (f(x) + f(y))

p
<

(
qλ

rs

)p
(fp(x) + fp(y)) , (20)

for all x, y ∈ J . Let A be a bounded positive operator on H ∈ (Ber) with spectrum in
J . Then by using the functional calculus and inequality (20), we obtain

fp(A) + 2(r−
1
q−1−λ)p (f(A) + f(y)I)

p
<

(
qλ

rs

)p
(fp(A) + fp(y)I) , (21)
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and hence〈
fp(A)k̂H ,µ, k̂H ,µ

〉
+ 2(r−

1
q−1−λ)p

〈
(f(A) + f(y)I)

p
k̂H ,µ, k̂H ,µ

〉
<

(
qλ

rs

)p 〈
(fp(A) + fp(y)I) k̂H ,µ, k̂H ,µ

〉
, (22)

for all µ ∈ Ω and all y ∈ J . Using the functional calculus once more to the positive
operator B with spectrum contained in J , we get〈

fp(A)k̂H ,µ, k̂H ,µ

〉
+ 2(r−

1
q−1−λ)p

〈
(f(A) + f(B))

p
k̂H ,µ, k̂H ,µ

〉
<

(
qλ

rs

)p 〈
(fp(A) + fp(B)) k̂H ,µ, k̂H ,µ

〉
, (23)

for all µ ∈ Ω. Thus, we have from (23) that

f̃p(A)(µ) + 2(r−
1
q−1−λ)p ˜(f(A) + f(B))

p
(µ) <

(
qλ

rs

)p
˜(fp(A) + fp(B))(µ), (24)

for all self-adjoint operators A,B ∈ B(H ) and for all µ ∈ Ω. Now, for B = A, we have
from (23) that

(
1 + 2(r−

1
q−1−λ)p+p

)
f̃p(A)(µ) < 2

(
qλ

rs

)p
f̃p(A)(µ), (25)

for all µ ∈ Ω. Since f(A) is self-adjoint, it can not be a nilpotent operator, and thus
by the uniqueness theorem of the Berezin symbol, we deduce that there exists a point

µ0 ∈ Ω such that f̃p(A)(µ0) ̸= 0. Therefore, by considering that f̃p(A)(µ0) > 0, we
conclude from (25) that

2

(
qλ

rs

)p
> 1 + 2(r−

1
q−λ)p, (26)

which is equivalent to (
qλ

rs

)p
>

1

2
+ 2(r−

1
q−λ)p−1. (27)

Since p
q + 1 = p, hence (27) reduces to

(
qλ

rs

)p
>

1

2
+ 2(r−1−λ)p. (28)

This proves (16), as desired. The theorem is proven. ◀
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