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Abstract. In this paper, we study the change in the eigenvalues of the Neumann prob-
lem for the Schrödinger equation with respect to the radius of the ball. We prove the
self-adjointness of the Schrödinger operator with a spherically symmetric homogeneous
potential and obtain asymptotic formulas for the eigenvalues of the Neumann problem as
the radius of the ball tends to zero.
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1. Introduction

Let us denote by HW
a the Schrödinger operator acting in L2 (B (0, a)) according to the

formula
HW
a u = −△u+W (r)u ,

with domain

D
(
HW
a

)
=

{
u (ξ) ∈ L2 (B (0, a)) :

∂u (ξ)

∂r

∣∣∣∣
|ξ|=a

= 0, ∀φ ∈ Sn−1, HW
a u ∈ L2 (B (0, a))

}
,
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4 On the asymptotics of eigenvalues of the Neumann problem

where ξ = (ξ1, ξ2, ..., ξn), B (0, a) is a ball in n-dimensional Euclidean space Rn of radius
a with center at the origin, Sn−1 is (n− 1)–dimensional unit sphere, i.e.

Sn−1 =
{
(η1, η2, ..., ηn) ∈ Rn : η21 + η22 + ...η2n = 1

}
,

r = |ξ|, △ =
n∑
k=1

∂2

∂ξ2k
is the classical Laplace operator, W (r) is a sufficiently smooth real

homogeneous function, i.e. W (tr) = tγW (r), γ > −2.

Our goal in this work is to study the asymptotic behavior of the eigenvalues of the
operator HW

a as the radius of the ball B (0, a) tends to zero. Note that this work is
motivated by the work of M. Dauge and B. Helffer [2], [3].

In [2], the authors studied the behavior of the eigenvalues of the Sturm-Liouville
operator for the Dirichlet and Neumann problems with respect to the length of the
interval. In [3], in the two-dimensional case, they studied the behavior of the eigenvalues
of the Neumann problem for the Schrödinger operator when a crack propagates in a plate,
and in the three-dimensional case, they studied the asymptotic forms of the eigenvalues
of the Neumann problem associated with the Schrödinger operator on spherical sectors
as the diameter of the region tends to zero or infinity.

Note that similar studies for general Laplace operators without potential have been
known for a long time: the first work in this direction was apparently Hadamard’s work
[7] published in 1908 for the Dirichlet problem.

In [4] and [8], they studied the asymptotic behavior of eigenvalues for arbitrary (sep-
arated or coupled) self-adjoint regular boundary-value problems for the Sturm-Liouville
operator with respect to the length of the interval.

It is known that the eigenvalues of the Dirichlet problem decrease with increasing the
domain of definition [1]. This result, generally speaking, is not valid for the Neumann
problem. Uchiyama in [13] showed that in this case all situations can be encountered.

As mentioned above, the cases n = 1, 2, 3 were studied in [2]-[4], [8]. Therefore, we
will assume that the dimension of the Euclidean space Rn is greater than three.

2. Self-adjointness of the Operator HW
a

Theorem 1. Let the dimension of the Euclidean space Rn be greater than three. Then
the operator HW

a is self-adjoint in L2 (B (0, a)).

Proof. Using tensor representation (see [11, p. 160])

L2 (B (0, a)) = L2,rn−1 (0, a)⊗ L2
(
Sn−1

)
of the space L2 (B (0, a)) and direct sum expansion of the Hilbert space L2

(
Sn−1

)
(see

[6, p. 27])

L2
(
Sn−1

)
=

∞⊕
l=0

El,
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the operator HW
a is represented in the following form:

HW
a =

∞⊕
l=0

(
LWa,l ⊗△l

Sn−1

)
,

where El are eigensubspaces of spherical harmonics of the Laplace-Beltrami operator
△Sn−1 on Sn−1, corresponding to eigenvalues l (l + n− 2) , l = 0, 1, 2, . . . , △l

Sn−1 is
restriction of the Laplace-Beltrami operator to eigensubspaces El, L

W
a,l is the operator

into L2,rn−1 (0, a), acting according to the rule

LWa,lu = − 1

rn−1

∂

∂r

(
rn−1 ∂u (r)

∂r

)
+
l (l + n− 2)

r2
u (r) +W (r)u (r) ,

with the domain

D
(
LWa,l

)
=

{
u′ (a) = 0, u (r) ∈ L2,rn−1 (0, a) , u′ (r) ∈ L2,rn−1 (0, a)

}
.

Because the operators △l
Sn−1 (l ∈ N∗ = 0, 1, 2, ..., ) are self-adjoint, then to prove the

theorem it is enough to prove that for any elements of the set N∗ the operators LWa,l are
self-adjoint in the space L2,rn−1 (0, a).

Let 0 ≤ x ≤ 1. Assume r = ax. Using a unitary transformation Uf = x−
n−1
2 f we

move from the operator LWa,l to the operator LWp,h , acting in L2 (0, 1), according to the
rule

LWp,hy = −y′′ (x) +
p2 − 1

4

x2
y (x) + hW (x) y (x) ,

with the domain

D
(
LWp,h

)
=

{
y (x) ∈ L2 (0, 1) :

xy′ (x)− n−1
2 y (x)

x
∈ L2 (0, 1) ,

y′ (1) =
n− 1

2
y (1) , LWp,hy∈ L2 (0, 1)

}
,

where h = aγ+2, p = n
2 + l− 1. It is obvious that the operators LWa,l and L

W
p,h are unitary

equivalent.
We introduce in L2 (0, 1) a minimal operator L̃0

p, generated by the differential expres-
sion

l0p ≡ − d2

dx2
+
p2 − 1

4

x2
.

It is known that (see [10, p. 285]) in the case of p ≥ 1, the defect index of the operator
L̃0
p is (1, 1). From the equality p = n

2 + l − 1 it follows that if n ≥ 4, then for any l ∈ N∗

the defect index of the operator L0
p is (1, 1). The conditions

xy′(x)−n−1
2 y(x)

x ∈ L2 (0, 1)

and y′ (1) = n−1
2 y (1) mean that the operator L0

p , acting in L2 (0, 1) according to the
rule L0

py = l0py, with the domain

D
(
L0
p

)
=

{
y (x) ∈ L2 (0, 1) :

xy′ (x)− n−1
2 y (x)

x
∈ L2 (0, 1) ,



6 On the asymptotics of eigenvalues of the Neumann problem

y′ (1) =
n− 1

2
y (1) , L0

py∈ L2 (0, 1)

}
is one of the self-adjoint extensions of the operator L̃0

p. If the functionW (x) is sufficiently

smooth on the interval [0,1], then the self-adjointness of the operator LWp,h is evident. If
the function W (x) is sufficiently smooth on the interval (0,1], but has a singularity at
zero of type |x|γ , −2 < γ < 0, then the self-adjointness of the operator LWp,h is proved

as in work [3]. The self-adjointness of the operator HW
a follows from the representation

HW
a =

⊕∞
l=0

(
LWa,l ⊗△l

Sn−1

)
and from the unitary equivalence of the operators LWa,l and

LWp,h. ◀

3. Spectral Problem for the Operator LWp,h
Consider the following problem:

−△ψ (ξ) +W (r)ψ (ξ) = µψ (ξ) , ξ ∈ B (0, a) , (1)

∂ψ (ξ)

∂r

∣∣∣∣
r=a

= 0, ∀φ ∈ Sn−1, (2)

where µ is the spectral parameter.
To solve problem (1), (2) it is convenient to switch to polar coordinates. Knowing

that in polar coordinates the Laplace operator has the form (see [6, p. 19])

△ = − 1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
+

−△Sn−1

r2
,

and moving to polar coordinates, we rewrite problem (1) and (2) in the following form:− 1
rn−1

∂
∂r

(
rn−1 ∂ψ(r,φ)

∂r

)
+

−△Sn−1ψ(r,φ)

r2 +W (r)ψ (r, φ) = µψ (r, φ) , r ∈ (0, a) ,

∂ψ(r,φ)
∂r

∣∣∣
r=a

= 0, ∀φ ∈ Sn−1.

Considering that the non-negative operator −△Sn−1 has eigenvalues of the form l(l+
n − 2), l = 0, 1, 2, ..., (see [6, p. 27]), then it is sufficient to study the asymptotic forms
of the eigenvalues and eigenfunctions as a→ 0 of the following problem:{

lu ≡ − 1
rn−1

∂
∂r

(
rn−1 ∂u(r)

∂r

)
+ l(l+n−2)

r2 u (r) +W (r)u (r) = µu (r) , r ∈ (0, a) ,

u′ (a) = 0, u (r) ∈ L2,rn−1 (0, a) , u′ (r) ∈ L2,rn−1 (0, a) , lu ∈ L2,rn−1 (0, a) .
(3)

Let 0 ≤ x ≤ 1. Assume r = ax and V (x) = u(ax). Taking into account the homo-
geneity of the function W (r), from (3) for V (x) we obtain the following equation:

1

a2

{
− 1

xn−1

d

dx

(
xn−1 dV (x)

dx

)
+
l (l + n− 2)

x2
V (x) + aγ+2W (x)V (x)

}
= µV (x) .
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Setting h = aγ+2, λ2 = µa
2
, we finally obtain the following problem for V (x) in the

space L2,xn−1 (0, 1):{
lhV ≡ − 1

xn−1
d
dx

(
xn−1 dV (x)

dx

)
+ l(l+n−2)

x2 V (x) + hW (x)V (x) = λ2V (x) , x ∈ (0, 1) ,

V ′ (1) = 0, V (x) ∈ L2,xn−1 (0, 1) , V ′ (x) ∈ L2,xn−1 (0, 1) , lhV ∈ L2,xn−1 (0, 1) .
(4)

Setting

V (x) = e−
1
2

∫
n−1
x dxy (x) = x−

n−1
2 y (x) , (5)

from (4) we obtain

lWp y ≡ −y′′ (x) +
p2 − 1

4

x2
y (x) + hW (x) y (x) = λ2y (x) , x ∈ (0, 1) , (6)

y′ (1) =
n− 1

2
y (1) , y (x) ∈ L2 (0, 1) ,

xy′ (x)− n−1
2 y (x)

x
∈ L2 (0, 1) , lpy ∈ L2 (0, 1) , (7)

where

p =

√(
n− 2

2

)2

+ l (l + n− 2) =
n

2
+ l − 1.

Indeed, referring to the relation

V ′ (x) = x−
n−1
2
xy′ (x)− n−1

2 y (x)

x
(8)

and taking into account that V ′ (x) ∈ L2,xn−1 (0, 1), we obtain

∫ 1

0

x−(n−1)

(
xy′ (x)− n−1

2 y (x)

x

)2

xn−1dx =

∫ 1

0

(
xy′ (x)− n−1

2 y (x)

x

)2

dx < +∞.

Turning again to formulas (5) and (8), we obtain

V (1) = y(1),

V ′ (1) = y′ (1)− n− 1

2
y (1) ,

From the condition V ′ (1) = 0 it follows that y′ (1)− n−1
2 y (1) = 0.

The remaining conditions included in (7) are easily verified.

To solve problem (6), (7), we first study the corresponding unperturbed boundary-
value problem.
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4. Eigenvalues and Eigenfunctions of the Unperturbed
Problem

Theorem 2. The eigenvalues λk, k = 1, 2, ..., of the operator L0
p are the solutions to the

equation

tgλ =
1

n− 1
λ, (9)

and the corresponding eigenfunctions yk(x), k = 1, 2, 3, ..., have the following form:

yk(x) = x
n−1
2 +lλk

n
2 +l−1

[
1− (λkx)

2

2 (n+2l)
+...

]
, k = 1, 2, 3, ... . (10)

Proof. It is known (see [12]) that for odd n (in this case p /∈ N∗) the fundamental solutions
of the equation

− 1

xn−1

d

dx

(
xn−1 dV (x)

dx

)
+
l (l + n− 2)

x2
V (x) = λ2V (x)

are the functions V1(x) = x−
n−2
2 Jn

2 +l−1(λx) and V2(x) = x−
n−2
2 J−(n

2 +l−1)(λx), where
Jν(t) is Bessel function of the 1st kind. And for even n (in this case p ∈ N∗) the fun-

damental solutions of equation (9) are the functions V1(x) = x−
n−2
2 Jn

2 +l−1(λx) and

V2(x) = x−
n−2
2 Yn

2 +l−1(λx), where Yν(τ) is Bessel function of the 2nd kind. From this
and relation (5) it follows that for odd n the fundamental solutions of the equation

−y′′ (x) +
p2 − 1

4

x2
y (x) = λ2y (x) (11)

are the functions y(1)(x) = x
n−1
2 V1(x)= x

1
2 Jn

2 +l−1(λx) and y(2)(x) = x
n−1
2 V

2
(x) =

x
1
2 J−(n

2 +l−1)(λx), and for even n the fundamental solutions of equation (11) are the

functions y(1)(x) = x
1
2 Jn

2 +l−1(λx) and y(2)(x) = x
1
2Yn

2 +l−1(λx).
Using the behavior of functions Jn

2 +l−1(λx) and Yn
2 +l−1(λx) for small positive values

of x (see [9, p. 172, formulas (5.16.1) and (5.16.2)]), i.e.

Jn
2 +l−1(λx) ∼

(λx)
n
2 +l−1

2
n
2 +l−1Γ

(
n
2 + l

) , (12)

Yn
2 +l−1(λx) ∼

2
n
2 +l−1Γ

(
n
2 + l − 1

)
π(λx)

n
2 +l−1

,

where Γ
(
n
2 + l

)
is Euler’s gamma function, we find that only the function y(1)(x) satisfies

conditions (10). Indeed, from (12) it follows that the following asymptotic formulas hold:

y(1)(x) ∼
λ

n
2 +l−1

2
n
2 +l−1Γ

(
n
2 + l

)xn−1
2 +l,
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y′(1)(x) ∼
λ

n
2 +l−1

2
n
2 +l−1Γ

(
n
2 + l

) (n− 1

2
+ l

)
x

n−3
2 +l.

From these asymptotic formulas we have

xy′(1)(x)−
n−1
2 y(1)(x)

x
∼ l · λ

n
2 +l−1

2
n
2 +l−1Γ

(
n
2 + l

)xn−3
2 +l.

From formula (12) it immediately follows that if n ≥ 4 , then for any l ∈ N∗

xy′(1)(x)−
n−1
2 y(1)(x)

x
∈ L2 (0, 1) .

Now let’s find the eigenvalues and eigenfunctions of the operator L0
p. It is easy to

check that the function y(1)(x, λ), which is a solution to equation (11), satisfies the
integral equation

y(1)(x, λ) = sinλx +
p2 − 1

4

λ

∫ 1

x

sinλ (ξ − x)

ξ2
y(1)(ξ, λ)dξ. (13)

From equation (13) we have

y′(1)(x) = λcosλx +

(
p2 − 1

4

)∫ 1

x

cosλ (ξ − x)

ξ2
y(1)(ξ, λ)dξ. (14)

From relations (13) and (14), and from the boundary condition

y′ (1, λ)− n− 1

2
y (1, λ) = 0

it follows that the eigenvalues of the operator L0
p are a solution to equation (9). From the

expansion of the Bessel function Jν (τ) in powers of τ [12] it follows that the eigenfunctions
of the operator L0

p will be in the form (10). ◀

5. Asymptotic Formulas for the Eigenvalues

Theorem 3. The following asymptotic formulas are valid for the eigenvalues of the
operator HW

a :

µk (a) =
βk,0
a2

+ βk,1a
γ + βk,2a

2γ+2 + βk,3a
3γ+6 +O

(
a4γ+8

)
,

k = 1, 2, ..., (0 < a→ 0) , (15)

where the coefficients βk,j, j = 0, 1, 2, 3, are determined by formulas (16)-(18).
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Proof. Knowing the eigenvalues and eigenfunctions of the operator L0
p, using the

Rayleigh-Schrödinger method (see [5]) we find the asymptotic forms of the eigenvalues
and eigenfunctions of the operator LWp as h→ 0 in the following form:

λ2k (h) = βk,0 + βk,1h+ βk,2h
2 + βk,3h

3 +O
(
h4

)
,

yk,h (x) = yk (x) + yk+1 (x)h+ yk+2 (x)h
2 + yk+3 (x)h

3 +O
(
h4

)
,

where βk,0 is the kth eigenvalue of the operator L0
p,

βk,1 =

∫ 1

0

W (x) y2k (x) dx, (16)

(
L0
p − βk,0

)
yk+1 (x) = βk,1yk (x)−W (x) yk (x) ,

βk,2 =

∫ 1

0

W (x) yk (x) yk+1 (x) dx, (17)(
L0
p − βk,0

)
yk+2 (x) = βk,1yk+1 (x)−W (x) yk+1 (x) + βk,2yk (x) ,

βk,3 =

∫ 1

0

W (x) yk (x) yk+2 (x) dx+
1

2
βk,1

∫ 1

0

W (x) y2k+1 (x) dx, (18)(
L0
p − βk,0

)
yk+3 (x) = βk,2yk+2 (x)−W (x) yk+2 (x) + βk,3yk+1 (x) .

Considering that the eigenvalues and eigenfunctions of problem (1) and (2) are related
to the eigenvalues and eigenfunctions of problem (6) and (7) by the relations

µk (a) =
λ2k
a2
, k = 1, 2, ..., uk (r) =

( r
a

)−n−1
2

yk

( r
a

)
,

from (16) taking into account h = aγ+2 we finally obtain formula (15). ◀
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