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Abstract. In this work, we study a homogeneous fourth-order elliptic operator-differen-
tial equation with an unbounded operator under non-homogeneous boundary conditions
on the semi-axis. We obtain sufficient conditions for the completeness of decreasing el-
ementary solutions of the equation under study in the space of all its solutions from a
fourth-order Sobolev type space.

Keywords: polynomial operator pencil, self-adjoint operator, operator-differential
equation, derivative chain of eigen- and adjoined vectors, system of decreasing
elementary solutions

Mathematics Subject Classification (2020): 34G10, 34L10, 35J40

1. Introduction

In a separable Hilbert space H, consider a fourth-order polynomial operator pencil

P (λ) = λ4E +A4 +

4∑
j=1

λ4−jAj , (1)

where λ is the spectral parameter, E is the unit operator, A is a self-adjoint positive
definite operator (A = A∗ ≥ cE, c > 0) with a completely continuous inverse operator
A−1, and the operators Aj , j = 1, 2, 3, 4, are such that AjA

−j , j = 1, 2, 3, 4, are bounded
in H.

As is known, the domain of definition of the operator Aα (α ≥ 0) becomes the Hilbert
space Hα with respect to the scalar product (x, y)α = (Aαx,Aαy), x, y ∈ D(Aα); for
α = 0 we assume H0 = H.
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Below we use the notation from [1].
Let us denote by L2 (R+;H) the Hilbert space of all vector-functions f(t), defined

almost everywhere in R+ = (0,+∞), with values in H and quadratically integrable in
R+, and

∥f∥L2(R+;H) =

(∫ +∞

0

∥f(t)∥2 dt
)1/2

< +∞.

Following the book [6], we introduce the Hilbert space of vector-functions

W 4
2 (R+;H) =

{
u(t) : A4u(t) ∈ L2 (R+;H) , u(4)(t) ∈ L2 (R+;H)

}
with the norm

∥u∥W 4
2 (R+;H) =

(∥∥A4u
∥∥2
L2(R+;H)

+
∥∥∥u(4)∥∥∥2

L2(R+;H)

)1/2

.

Here and further, derivatives are understood in the sense of distribution theory [6].
Further, by L(X,Y ) we mean the set of linear bounded operators acting from a

Hilbert space X to another Hilbert space Y . Let us fix some operator K ∈ L
(
H 5

2
,H 3

2

)
and define a subspace in W 4

2 (R+;H):

W 4
2,K (R+;H) =

{
u(t) : u(t) ∈W 4

2 (R+;H) , u(0) = 0, u′′(0) = Ku′(0)
}
.

From the trace theorem [6] it follows that W 4
2,K (R+;H) is defined correctly.

We associate the boundary-value problem with pencil (1)

P

(
d

dt

)
u(t) = 0, t ∈ R+, (2)

u(0) = φ, u′′(0)−Ku′(0) = ψ, φ ∈ H 7
2
, ψ ∈ H 3

2
, K ∈ L

(
H 5

2
,H 3

2

)
. (3)

Definition 1. If for any φ ∈ H 7
2
, ψ ∈ H 3

2
one can find a vector-function u(t) ∈

W 4
2 (R+;H) satisfying equation (2) almost everywhere in R+, as well as the boundary

conditions (in the sense of convergence)

lim
t→+0

∥u(t)− φ∥H 7
2

= 0, lim
t→+0

∥u′′(t)−Ku′(t)− ψ∥H 3
2

= 0

and the assessment takes place

∥u∥W 4
2 (R+;H) ≤ const

(
∥φ∥H 7

2

+ ∥ψ∥H 3
2

)
,

then we will say that the boundary-value problem (2), (3) is regularly solvable, and u(t)
is called a regular solution of the boundary-value problem (2), (3).

Definition 2. If the equation P (λ0)x0 = 0 has a non-trivial solution x0, then λ0 is
called the eigenvalue of the operator pencil P (λ), and x0 – eigenvector of the operator
pencil P (λ) corresponding to the eigenvalue λ0.
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Definition 3. Let λ0 be an eigenvalue and x0 be one of the eigenvectors corresponding
to the value λ0. If, for the vectors x1, x2, . . . , xm, the following equalities are satisfied

4∑
k=0

1

k!

dkP (λ)

dλk

∣∣∣∣
λ=λ0

xp−k = 0,

p = 0, 1, 2, . . . , m (x−1 = x−2 = x−3 = x−4 = 0),

then the system of vectors x1, x2, . . . , xm is called a chain of adjoined vectors to the
eigenvector x0.

Let us denote by σ∞(H) the set of completely continuous operators acting in H.

If Q∈ σ∞(H), then (Q∗Q)
1/2

is a completely continuous self-adjoint operator in H.

The eigenvalues of the operator (Q∗Q)
1/2

are called s-numbers of the operator Q. Let
us number the non-zero s-numbers of the operator Q in descending order, taking into
account their multiplicity and denote

σp =

Q : Q∈ σ∞(H),

∞∑
j=1

spj (Q) <∞

 (0 < p <∞).

From the results of [5] and the assumptions that A−1 ∈ σ∞(H), AjA
−j ∈ L(H,H),

j = 1, 2, 3, 4,
(
E +A4A

−4
)−1 ∈ L(H,H) it follows that the spectrum of the pencil

P (λ) is discrete, which means the existence of the resolvent P−1(λ) for all λ∈ C, with
the exception of the set of isolated eigenvalues {λn}, which can only have a limit point
at infinity.

According to [5], each eigenvalue λn can be adjoined with a canonical system of eigen-
and adjoined vectors x0,n , x1,n , . . . , xm,n of the pencil P (λ). Then the functions

uh,n(t) = eλnt

(
xh,n +

t

1!
xh−1,n + . . .+

th

h!
x0,n

)
, h = 0, 1, . . . ,m, (4)

satisfy equation (2) and are called its elementary solutions. It is clear that for Reλn < 0
these solutions decrease and belong to the space W 4

2 (R+;H).

In this paper, we obtain conditions for the completeness of decreasing elementary
solutions of equation (2) in the space of all regular solutions of the boundary-value
problem (2), (3).

Note that the completeness of elementary solutions in some solution spaces was pre-
viously indicated in [2]–[4], [10]–[15].

2. Main Results

In [1], the regular solvability of boundary-value problem (2) and (3) was established.
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Theorem 1. Let A = A∗ ≥ cE, c > 0, B = A
3
2KA

−5
2 , ReB ≥ 0, AjA

−j ∈ L(H, H),

j = 1, 2, 3, 4, and the inequality holds
4∑

j=1

cj
∥∥AjA

−j
∥∥
H→H

< 1, where c1 = 1, c2 = 1
2 ,

c3 = 1√
2
, c4 = 1. Then the boundary-value problem (2), (3) is regularly solvable.

If we take K = 0 in the boundary conditions (3), then they will be rewritten in the
form

u(0) = φ, u′′(0) = ψ̃, φ ∈ H 7
2
, ψ̃ ∈ H 3

2
. (5)

Note that the same Theorem 1 for the boundary-value problem (2), (5) is given in
[8].

Using solutions (4) for Reλn < 0, we determine the vector

x̃
(0,2)
h,n =

{
x
(0)
h,n, x

(2)
h,n

}
∈ H7/2 ⊕H3/2,

where

x
(0)
h,n ≡ uh,n(0), x

(2)
h,n ≡ u

′′

h,n(0), h = 0, 1, . . . ,m.

We will call the system
{
x̃
(0,2)
h,n

}
a derivative chain of eigen- and adjoined vectors of

the operator pencil P (λ) generated by the boundary-value problem (2), (5).
Note that in [9, p. 152-154] under conditions A = A∗ ≥ cE, c > 0, A−1 ∈ σ∞(H),

AjA
−j ∈ L(H,H), j = 1, 2, 3, 4,

4∑
j=1

cj
∥∥AjA

−j
∥∥
H→H

< 1, where c1 = 1, c2 = 1
2 ,

c3 = 1√
2
, c4 = 1,

(
E +A4A

−4
)−1 ∈ L(H,H) and fulfillment of one of the conditions

A−1 ∈ σp, 0 < p ≤ 1 or A−1 ∈ σp, 0 < p < ∞, AjA
−j∈ σ∞(H), j = 1, 2, 3, 4, the

completeness of the derivative chain
{
x̃
(0,2)
h,n

}
has been proven in the space H7/2 ⊕H3/2.

Let us define the following derivative chain:{
x
(0,2,1)
h,n

}
, x

(0,2,1)
h,n =

{
x
(0)
h,n, x

(2,1)
h,n

}
∈ H7/2 ⊕H3/2,

x
(0)
h,n = uh,n(0), x

(2,1)
h,n ≡ x

(2)
h,n −Kx

(1)
h,n = u′′h,n(0)−Ku′h,n(0), K ∈ L

(
H 5

2
,H 3

2

)
.

It is obvious that the derivative chain
{
x
(0,2,1)
h,n

}
corresponds to the boundary-value

problem (2), (3).

It is known [7, p. 126], that to prove the completeness of the derivative chain
{
x
(0,2,1)
h,n

}
in the space H7/2 ⊕H3/2, it is sufficient to show its equivalence to the derivative chain{
x̃
(0,2)
h,n

}
.

As noted above, the existence of a unique regular solution u(t) of the boundary-value
problem (2), (3) for any φ ∈ H 7

2
, ψ ∈ H 3

2
, was proven in [1] under the conditions of

Theorem 1. And in [8], under the same conditions of Theorem 1, the existence of a
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unique regular solution ũ(t) of the boundary-value problem (2), (5) was proven for any

φ ∈ H 7
2
, ψ̃ ∈ H 3

2
, in case K = 0. Then the inequalities hold

∥u∥W 4
2 (R+;H) ≤ const

(
∥φ∥H 7

2

+ ∥ψ∥H 3
2

)
,

∥ũ∥W 4
2 (R+;H) ≤ const

(
∥φ∥H 7

2

+
∥∥∥ψ̃∥∥∥

H 3
2

)
.

On the other hand, by the trace theorem [6], the following inequalities are true:

∥φ∥H 7
2

+ ∥ψ∥H 3
2

≤ const ∥u∥W 4
2 (R+;H),

∥φ∥H 7
2

+
∥∥∥ψ̃∥∥∥

H 3
2

≤ const ∥ũ∥W 4
2 (R+;H).

To prove the completeness of the chain
{
x
(0,2,1)
h,n

}
, we find a bounded invertible op-

erator acting in the space H7/2 ⊕H3/2 and transferring the chain
{
x̃
(0,2)
h,n

}
to
{
x
(0,2,1)
h,n

}
.

Obviously, for
{
x
(0)
h,n, x

(2)
h,n

}
∈ H7/2 ⊕H3/2 the vector-function uh,n(t) is a solution

to equation (2) with boundary conditions

uh,n(0) = x
(0)
h,n, u

′′
h,n(0) = x

(2)
h,n.

That is why

∥uh,n∥W 4
2 (R+;H) ≤ c1

(∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥ x(2)h,n

∥∥∥
H 3

2

)
.

And by the trace theorem [6]

∥uh,n∥W 4
2 (R+;H) ≥ c2

(∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥ x(2)h,n

∥∥∥
H 3

2

)
.

Similarly, for
{
x
(0)
h,n, x

(2,1)
h,n

}
∈ H7/2 ⊕H3/2 the vector-function uh,n(t) is a solution

to equation (2) with the boundary conditions

uh,n(0) = x
(0)
h,n, u′′h,n(0)−Ku′h,n(0) = x

(2)
h,n −Kx

(1)
h,n = x

(2,1)
h,n ,

at that

∥uh,n∥W 4
2 (R+;H) ≤ d1

(∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥ x(2,1)h,n

∥∥∥
H 3

2

)
.

And based on the trace theorem [6], we have

∥uh,n∥W 4
2 (R+;H) ≥ d2

(∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥ x(2,1)h,n

∥∥∥
H 3

2

)
.
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Now for all
{
x
(0)
h,n, x

(2)
h,n

}
we define the operator S acting in the space H7/2 ⊕H3/2

as follows:

S : H7/2 ⊕H3/2 → H7/2 ⊕H3/2,

S
({
x
(0)
h,n, x

(2)
h,n

})
=
{
x
(0)
h,n, x

(2,1)
h,n

}
.

It is obvious that∥∥∥S ({x(0)h,n, x
(2)
h,n

})∥∥∥
H7/2⊕H3/2

=
∥∥∥{x(0)h,n, x

(2,1)
h,n

}∥∥∥
H7/2⊕H3/2

=

=
∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥x(2,1)h,n

∥∥∥
H 3

2

≤ 1

d2
∥uh,n∥W 4

2 (R+;H) ≤

≤ c1
d2

(∥∥∥x(0)h,n

∥∥∥
H 7

2

+
∥∥∥ x(2)h,n

∥∥∥
H 3

2

)
=
c1
d2

∥∥∥{x(0)h,n, x
(2)
h,n

}∥∥∥
H7/2⊕H3/2

.

Consequently, the operator S is defined on the everywhere dense set
{
x̃
(0,2)
h,n

}
(com-

pleteness of the derivative chain
{
x̃
(0,2)
h,n

}
in the space H7/2⊕H3/2 was proven in [9]) and

bounded. Therefore, it can be extended by continuity to the entire space H7/2 ⊕ H3/2.
On the other hand, it is clear that S ({0, 0}) = {0, 0} . From this it follows that

S is one-to-one, i.e., from any
{
x
(0)
h,n, x

(2,1)
h,n

}
there exists

{
x
(0)
h,n, x

(2)
h,n

}
, such that

S
({
x
(0)
h,n, x

(2)
h,n

})
=
{
x
(0)
h,n, x

(2,1)
h,n

}
.

As a result, the operator S : H7/2 ⊕ H3/2 → H7/2 ⊕ H3/2 is one-to-one and
continuous. Then S−1 is also a bounded operator.

Thus, since the derivative chain
{
x̃
(0,2)
h,n

}
is complete in the space H7/2 ⊕ H3/2 and

S
({
x̃
(0,2)
h,n

})
=
{
x
(0,2,1)
h,n

}
, then we obtain that the derivative chain

{
x
(0,2,1)
h,n

}
is also a

complete system in the space H7/2 ⊕H3/2.
The above reasoning allows us to formulate the main result of the work.
Theorem 1 establishes sufficient conditions to ensure the existence of a unique solution

from the space W 4
2 (R+;H) for the boundary-value problem (2), (3) for any φ ∈ H7/2,

ψ ∈ H3/2. We denote the set of all such solutions by W (0,2,1)(P ). From the theorem on

intermediate derivatives and the trace theorem [6] it follows that the set W (0,2,1)(P ) is a
closed subspace of the space W 4

2 (R+;H). Now we prove the completeness of the system
of decreasing elementary solutions of equation (2) in the space W (0,2,1)(P ).

The following theorem holds.

Theorem 2. Let all the conditions of Theorem 1 be satisfied and
(
E +A4A

−4
)−1 ∈

L(H,H). In addition, one of the following conditions is true:
a) A−1 ∈ σp, 0 < p ≤ 1;
b) A−1 ∈ σp, 0 < p <∞, AjA

−j∈ σ∞(H), j = 1, 2, 3, 4.
Then the system of decreasing elementary solutions to the boundary value problem (2),
(3) is complete in the space W (0,2,1)(P ).
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Proof. As noted, the decreasing elementary solution uh,n(t) has the representation

uh,n(t) = eλnt

(
xh,n +

t

1!
xh−1,n + . . .+

th

h!
x0,n

)
, h = 0, 1, . . . ,m,

where Reλn < 0, and x0,n, x1,n, . . . , xm,n is the canonical system of eigen- and adjoined
vectors corresponding to the eigenvalue λn.

Taking into account that K ∈ L
(
H 5

2
,H 3

2

)
, by the trace theorem [6], for any

u(t) ∈W
4
2 (R+;H) we obtain:

∥u(0)∥H 7
2

+ ∥u′′(0)−Ku′(0)∥H 3
2

≤

≤ ∥u(0)∥H 7
2

+ ∥u′′(0)∥H 3
2

+ ∥Ku′(0)∥H 3
2

≤ const ∥u∥W 4
2 (R+;H) .

On the other hand, from the uniqueness of solutions to the boundary-value problem
(2), (3) (see Theorem 1) we have

∥u∥W 4
2 (R+;H) ≤ const

(
∥φ∥H 7

2

+ ∥ψ∥H 3
2

)
. (6)

If we take into account the conditions of the theorem and the equivalence of systems{
x̃
(0,2)
h,n

}
and

{
x
(0,2,1)
h,n

}
in the space H7/2 ⊕ H3/2, then we can say that the derivative

chain
{
x
(0,2,1)
h,n

}
is complete in the space H7/2 ⊕ H3/2, i.e., for any ε > 0 there exist a

number N and numbers cNh,n such that∥∥∥∥∥φ−
N∑

n=1

∑
h

cNh,nx
(0)
h,n

∥∥∥∥∥
H 7

2

< ε, (7)

∥∥∥∥∥ψ −
N∑

n=1

∑
h

cNh,nx
(2,1)
h,n

∥∥∥∥∥
H 3

2

< ε. (8)

Because x
(0)
h,n = uh,n(0), x

(2,1)
h,n = x

(2)
h,n − Kx

(1)
h,n = u′′h,n(0) − Ku′h,n(0), φ = u(0),

ψ = u′′(0)−Ku′(0), then for the solution u(t)−
N∑

n=1

∑
h

cNh,nuh,n(t) due to inequality (6)

we have: ∥∥∥∥∥u(t)−
N∑

n=1

∑
h

cNh,nuh,n(t)

∥∥∥∥∥
W 4

2 (R+;H)

≤

≤ const

∥∥∥∥∥φ−
N∑

n=1

∑
h

cNh,nx
(0)
h,n

∥∥∥∥∥
H 7

2

+

∥∥∥∥∥ψ −
N∑

n=1

∑
h

cNh,nx
(2,1)
h,n

∥∥∥∥∥
H 3

2

 . (9)
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Now, if we take into account inequalities (7) and (8) in inequality (9), we obtain:∥∥∥∥∥u(t)−
N∑

n=1

∑
h

cNh,nuh,n(t)

∥∥∥∥∥
W 4

2 (R+;H)

< const · ε = ε1.

The last inequality means that the system of decreasing elementary solutions to the
boundary-value problem (2), (3) is complete in the space W (0,2,1)(P ). The theorem has
been proven. ◀
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