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Abstract. The paper studies the classical solvability of an inverse boundary value prob-
lem for a second order parabolic equation with nonlocal boundary conditions. For this
purpose, first, the considered problem is reduced to an auxiliary equivalent problem in a
certain sense. Then, using the Fourier method the auxiliary problem is presented as a
system of integral equations. Further, by means of the contraction mappings principle the
unique existence of the solution of the obtained system of integral equations is shown. At
the end of investigation the existence and uniqueness theorem for the classical solution of
the original inverse boundary value problem is proved based on the equivalence of these
problems.
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1. Introduction and Formulation of the Problem

It is known that mathematical modeling of many real processes occurring during exper-
iments in the field of some natural sciences leads to the study of inverse boundary value
problems. Simultaneous determination of unknown coefficients and/or right-hand side
of partial differential equations with respect to some additional measurements is called
inverse boundary value problem in the theory of equations of mathematical physics.
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The applied importance of inverse problems is so great (they arise in various fields of
human activity such as seismology, mineral exploration, biology, medicine, desalination
of seawater, movement of liquid in a porous medium, etc.) which puts them a series of
the most actual problems of modern mathematics. The presence in the inverse prob-
lems of additional unknown functions requires that in the complement to the boundary
conditions that are natural for a particular class of differential equations, impose some ad-
ditional conditions - overdetermination conditions. The basics of the theory and practice
of investigating inverse problems of mathematical physics were established and devel-
oped in the fundamental works of the outstanding mathematicians A.N.Tikhonov [25],
M.M.Lavrent’ev et al. [21], V.K.Ivanov et al. [16], A.M.Denisov [10], M.I.Ivanchov [14],
A.I.Kozhanov [20], and their followers.

Nowadays, in the modern mathematical literature, the theory of inverse boundary
value problems for parabolic equations is stated rather satisfactory. The inverse and ill-
posed problems associated with the parabolic/heat equation has drawn the attention of
many authors. A more detailed bibliography and a classification of problems are found
in monographs or books (see for example, [2], [3], [6], [8], [9], [11], [12], [18], [22], [23],
[24], and the references therein).

Let us now browse the content of some related works devoted to inverse boundary
value problems for parabolic/heat equations. A.Y. Akhundov studied the well-posedness
of the inverse problem for determining the unknown coefficient of higher derivatives of
a quasilinear parabolic equation of divergent type in a multidimensional domain in his
work [1]. In [4], [5], the identification of the unknown lowest coefficient and the right-
hand side in a second-order parabolic equation with integral overdetermination conditions
is studied, and sufficient conditions for the existence and uniqueness of the classical
solution to the considered inverse problem are established. J.R. Cannon and Y.P. Lin [7]
studied the inverse problem of simulantenousely finding the evolution parameter p(t) and
the solution u(x, t) in quasi-linear parabolic equation, and demonstrated the existence,
uniqueness, and continuous dependence upon the data of the solution (u, p). The authors
M.I. Ismailov and F. Kanca [13] investigate the inverse boundary value problem of finding
the time-dependent coefficient of heat capacity together with the solution of heat equation
with nonlocal boundary and integral overdetermination conditions. In addition, in this
work are studied the existence, uniqueness, and continuous dependence of solution upon
the data and the numerical procedure for the solution of considered inverse problem
are presented with the examples. In the article published by M.I. Ivanchov and N.V.
Pabyrivs’ka [15], the existence and uniqueness conditions for a solution of the inverse
problem for a parabolic equation with nonlocal boundary and integral overdetermination
conditions are established. In the paper of V.L.Kamynin [17], existence and uniqueness
theorems for the solution of the inverse problem of simultaneously determination of the
right-hand side and the coefficient of a lower-order derivative in a parabolic equation
under the integral observation condition were proved. Moreover, explicit estimates for
the maximum absolute value of the unknown right-hand side and an unknown coefficient
of the equation with constants are expressed by the input data of the problem.

It should be noted that the problem statement and the proof techniques used in
this paper are different from previous published works. More precisely, the technique
used in this paper is based on the passing from the original inverse problem to the new
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equivalent one, the study of the solvability of the equivalent problem, and then in the
reverse transition to the original problem. A distinctive feature of this article is the
consideration of an inverse boundary-value problem with both spatial and time nonlocal
conditions.

Let T > 0 be a fixed time moment and let DT denotes the rectangular region defined
by the inequalities 0 ≤ x ≤ 1 and 0 ≤ t ≤ T . We consider the problem of determining
the unknown functions u(x, t) ∈ C2,1(DT ) and a(t), b(t) ∈ C[0, T ] such that the triple
{u(x, t), a(t), b(t)} satisfies the following parabolic equation

c(t)ut(x, t) = uxx(x, t) + a(t)u(x, t) + b(t)g(x, t) + f(x, t) (x, t) ∈ DT , (1)

with the nonlocal condition

u(x, 0) + δu(x, T ) +

T∫
0

p(t)u(x, t)dt = φ(x), 0 ≤ x ≤ 1, (2)

the boundary condition

ux(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (3)

and the overdetermination conditions

u(0, t) = h1(t), 0 ≤ t ≤ T, (4)

1∫
0

H(x)u(x, t)dx = h2(t), 0 ≤ t ≤ T, (5)

where δ ≥ 0 is any fixed number, 0 < c(t), f(x, t), g(x, t), 0 ≤ p(t), φ(x),H(x), and
hi(t) (i = 1, 2) are given functions.

Definition. The triple {u(x, t), a(t), b(t)} is said to be a classical solution of the problem
(1)–(5), if the functions u(x, t) ∈ C2,1(DT ) and a(t), b(t) ∈ C[0, T ] satisfy Eq. (1) in DT ,
the condition (2) on [0, 1], and the statements (3)–(5) on the interval [0, T ] in the classical
(usual) sense.

The following lemma is valid.

Lemma 1. [4] Suppose that δ ≥ 0, c(t), a(t) ∈ C[0, T ] and p(t) ∈ C[0, T ] holds. Then the
problem

c(t)y′(t) = a(t)y(t), 0 ≤ t ≤ T,

y(0) + δy(T ) +

T∫
0

p(τ)y(τ)dτ = 0,

has a unique trivial solution.

We have the following theorem.
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Theorem 1. Assume that c(t) ∈ C[0, T ], f(x, t), g(x, t) ∈ C(DT ), φ(x) ∈ C[0, 1],H(x) ∈

C[0, 1], hi(t) ∈ C1[0, T ](i = 1, 2), h(t) ≡ h1(t)
1∫
0

H(x)g(x, t)dx − g(0, t)h2(t) ̸= 0, t ∈

[0, T ], and the compatibility conditions

h1(0) + δh1(T ) +

T∫
0

p(t)h1(t)dt = φ(0), (6)

h2(0) + δh2(T ) +

T∫
0

p(t)h2(t)dt =

1∫
0

H(x)φ(x)dx, (7)

holds. Then the problem of finding a classical solution of (1)–(5) is equivalent to the prob-
lem of determining the functions u(x, t) ∈ C2,1(DT ) and a(t), b(t) ∈ C[0, T ], satisfying
the Eq.(1), the conditions (2), (3), and the relations

c(t)h1(t) = uxx(0, t) + a(t)h1(t) + b(t)g(0, t) + f(0, t), 0 ≤ t ≤ T, (8)

c(t)h′(t) =

1∫
0

H(x)uxx(x, t)dx+ a(t)h(t) +

1∫
0

H(x)f(x, t)dx, 0 ≤ t ≤ T. (9)

Proof. Let {u(x, t), a(t), b(t)} be a classical solution of (1)–(5). Further, assuming hi(t) ∈
C1[0, T ] (i = 1, 2) and differentiating (4) and (5), we have

ut(0, t) = h′
1(t), 0 ≤ t ≤ T, (10)

and
1∫

0

H(x)ut(x, t)dx = h′
2(t), 0 ≤ t ≤ T, (11)

respectively.
Setting x = 0 in Eq. (1), the procedure yields

c(t)ut(0, t) = uxx(0, t) + a(t)u(0, t) + a(t)g(0, t) + f(0, t), 0 ≤ t ≤ T. (12)

From (12), taking into account (4) and (10), we conclude that condition (8) is satisfied.
Further, multiplying both parts of Eq.(1) by the function H(x) and integrating with
respect to x over the interval [0, 1], we obtain

c(t)
d

dt

1∫
0

H(x)u(x, t)dx =

1∫
0

H(x)uxx(x, t)dx

+a(t)

1∫
0

H(x)u(x, t)dx+ b(t)

1∫
0

H(x)g(x, t)dx+

1∫
0

H(x)f(x, t)dx, 0 ≤ t ≤ T. (13)
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Hence, from (13), taking into account (5) and (11), we arrive at (9).
Now suppose that the triple {u(x, t), a(t), b(t)} is a solution to the problem (1)–(3),

(8), (9). Then from (8) and (12), we get

c(t)
d

dt
(u(0, t)− h1(t)) = a(t)(u(0, t)− h1(t)), 0 ≤ t ≤ T. (14)

Using (2) and the compatibility condition (8), we obtain the following relation

u(0, 0)− h1(0) + δ(u(0, T )− h1(T )) +

T∫
0

p(t)(u(0, t)− h1(t))dt

= u(0, 0) + δu(0, T ) +

T∫
0

p(t)u(0, t)dt− (h1(0) + δ + h1(T )) +

T∫
0

p(t)h1(t)dt

= φ(0)−

h1(0) + δh1(T ) +

T∫
0

p(t)h1(t)dt

 = 0. (15)

From (14), (15), by virtue of Lemma 1, we conclude that condition (4) is satisfied.
In turn, from (9) and (13) we have

c(t)
d

dt

 1∫
0

H(x)u(x, t)dx− h(t)

 = a(t)

 1∫
0

H(x)u(x, t)dx− h(t)

 , 0 ≤ t ≤ T. (16)

By virtue of (2) and the compatibility condition (7), we may write

1∫
0

H(x)u(x, 0)dx− h(0) + δ

 1∫
0

H(x)u(x, T )dx− h(T )



+

T∫
0

p(t)

 1∫
0

H(x)u(x, t)dx− h(t)

 dt

=

1∫
0

H(x)

u(x, 0) + δu(x, T ) +

T∫
0

p(t)u(x, t)dt

 dx

−

h(0) + δh(T ) +

T∫
0

p(t)h(t)dt


=

1∫
0

H(x)φ(x)dx−

h(0) + δh(T ) +

T∫
0

p(t)h(t)dt

 = 0. (17)

From (16), (17), by virtue of Lemma 1, we conclude that condition (5) is satisfied.
The proof is complete.
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2. Classical Solvability of Inverse Boundary Value
Problem

Let us now consider problem (1)–(3), (8), (9), and assume that a(t) and b(t) are known
functions. Since the system {cosλkx}∞k=1, for λk = π

2 (2k − 1) is a complete orthogonal
system in L2(0, 1), then

u(x, t) =

∞∑
k=1

uk(t) cosλkx, λk =
π

2
(2k − 1), (18)

where

uk(t) = 2

1∫
0

u(x, t) cosλkxdx, k = 1, 2, ....

Applying the formal scheme of the Fourier method, from (1) and (2), we have

c(t)u′
k(t) + λ2

kuk(t) = fk(t) + a(t)uk(t) + b(t)gk(t), k = 1, 2, ...; 0 ≤ t ≤ T, (19)

uk(0) + δuk(T ) +

T∫
0

p(t)uk(t)dt = φk, k = 1, 2, . . . , (20)

where

fk(t) = 2

1∫
0

f(x, t) cosλkxdx, gk(t) = 2

1∫
0

g(x, t) cosλkxdx,

φk = 2

1∫
0

φ(x) cosλkxdx, k = 1, 2, . . . .

Solving problem (19), (20), we find

uk(t) =
e
−

t∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

φk −
T∫

0

p(t)uk(t)dt



− δe
−

T∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

T∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ

+

t∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ, k = 1, 2, . . . , (21)

where Fk(τ ;u, a, b) = fk(t) + a(t)uk(t) + b(t)gk(t), k = 1, 2, . . . .
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Substituting the expressions of uk(t), k = 1, 2, ... into (18), we get

u(x, t) =
∞∑
k=1


e
−

t∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

φk −
T∫

0

p(t)uk(t)dt

− δe
−

T∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

×
T∫

0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ +

t∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ

 cosλkx. (22)

Now from (8) and (9), taking into account (18), respectively, we have

a(t) = [h(t)]−1

(c(t)h′
1(t)− f(0, t))

1∫
0

H(x)g(x, t)dx

−(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)g(0, t))

+

∞∑
k=1

λ2
kuk(t)

 1∫
0

H(x)g(x, t)dx− g(0, t)

1∫
0

H(x) cosλkxdx

 , 0 ≤ t ≤ T, (23)

b(t) = [h(t)]−1

(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)h1(t))− (c(t)h′
1(t)− f(0, t)h2(t))

+

∞∑
k=1

λ2
kuk(t)

h1(t)

1∫
0

H(x) cosλkxdx− h2(t)

 , 0 ≤ t ≤ T, (24)

where

h(t) ≡ h1(t)

1∫
0

H(x)g(x, t)dx− g(0, t)h2(t) ̸= 0, 0 ≤ t ≤ T.

Furthermore, in order to obtain the second and third components of the triple
{u(x, t), a(t), b(t)}, we substitute the expression (21) into (23) and (24)

a(t) = [h(t)]−1

(c(t)h′
1(t)− f(0, t))

1∫
0

H(x)g(x, t)dx

−(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)g(0, t))
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+

∞∑
k=1

λ2
k

 e
−

t∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

φk −
T∫

0

p(t)uk(t)dt



− δe
−

T∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

T∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ

+

t∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ


×

 1∫
0

H(x)(g(x, t)− g(0, t) cosλkx)dx

 , 0 ≤ t ≤ T, (25)

b(t) = [h(t)]−1

(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)h1(t))− (c(t)h′
1(t)− f(0, t)h2(t))

+

∞∑
k=1

λ2
k

 e
−

t∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

φk −
T∫

0

p(t)uk(t)dt



− δe
−

T∫
0

λ2
k

c(s)
ds

1 + δe
−

T∫
0

λ2
k

c(s)
ds

T∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ

+

t∫
0

1

c(τ)
Fk(τ ;u, a, b)e

−
t∫
τ

λ2
k

c(s)
ds
dτ


×

h1(t)

1∫
0

H(x) cosλkxdx− h2(t)

 , 0 ≤ t ≤ T. (26)

Thus, finding a solution to the problem (1)–(3), (8), (9) was reduced to finding a
solution of system (22), (25), (26), with respect to the unknown functions u(x, t) and
a(t).

The following lemma plays an important role to study the uniqueness of the solution
of problem (1)–(3), (8), (9).

Lemma 2. If {u(x, t), a(t), b(t)} is any solution of (1)–(3), (8), (9) then the functions

uk(t) = 2

1∫
0

u(x, t) cosλkxdx, k = 1, 2, ...,
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satisfy the system (21) on the interval [0, T ].

Obviously, if uk(t) = 2
1∫
0

u(x, t) cosλkxdx, k = 1, 2, ... is a solution to system (21),

then the functions u(x, t) =
∞∑
k=1

uk(t) cosλkx (λk = π
2 (2k − 1)), a(t) and a(t) is also a

solution of system (22), (25), (26).
It follows from Lemma 2 that

Corollary. Suppose that system (22), (25), (26) has a unique solution. Then the problem
(1)–(3), (8), (9) couldn’t have more than one solution, in other words, if problem (1)–(3),
(8), (9) has a solution, then it is a unique.

In order to study the problem (1)–(3), (8), (9), we introduce the following functional
spaces: Let B3

2,T denote the set of all functions of the form

u(x, t) =

∞∑
k=1

uk(t) cosλkx, λk =
π

2
(2k − 1),

considered in domain DT , where the functions uk(t), k = 1, 2, ... are continuous on [0, T ],
and satisfy the condition

J(u) =

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

< +∞.

The norm in the space B3
2,T is defined as follows:

∥u(x, t)∥B3
2,T

= J(u);

We denote by E3
T the topological product of B3

2,T × C[0, T ] × C[0, T ]. The norm of
the vector function z(x, t) = {u(x, t), a(t), b(t)} is determined by the formula

∥z(x, t)∥E3
T
= ∥u(x, t)∥B3

2,T
+ ∥a(t)∥C[0,T ] + ∥b(t)∥C[0,T ] .

It is known that the spaces B3
2,T and E3

T are Banach spaces [19].
Now, consider the operator

Φ(u, a) = {Φ1(u, a, b), Φ2(u, a, b), Φ3(u, a, b)}

in the space E3
T , where

Φ1(u, a, b) = ũ(x, t) ≡
∞∑
k=1

ũk(t) cosλkx, Φ2(u, a, b) = ã(t), Φ3(u, a, b) = b̃(t),

and the functions ũk(t), k = 1, 2, ..., a(t), and b(t) are equal to the right-hand sides of
(21), (25), (26), respectively.

We impose the following conditions on the data of problem (1)–(3), (8), (9):
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H1) φ(x) ∈ C2[0, 1], φ(3)(x) ∈ L2(0, 1), φ′(0) = φ(1) = φ′′(1) = 0;
H2) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ),

fx(0, t) = f(1, t) = fxx(1, t) = 0, 0 ≤ t ≤ T ;
H3) g(x, t), gx(x, t), gxx(x, t) ∈ C(DT ), gxxx(x, t) ∈ L2(DT ),

gx(0, t) = g(1, t) = gxx(1, t) = 0, 0 ≤ t ≤ T ;
H4) δ ≥ 0, 0 < c(t) ∈ C[0, T ], 0 ≤ p(t) ∈ C[0, T ], H(x) ∈ C[0, 1],

hi(t) ∈ C1[0, T ] (i = 1, 2), h(t) ≡ h1(t)
1∫
0

H(x)g(x, t)dx− g(0, t)h2(t) ̸= 0, 0 ≤ t ≤ T.

Then, using simple transformations from (21), (25) and (26), respectively, we find
that the inequalities( ∞∑

k=1

(λ3
k ∥ũk(t)∥C[0,T ])

2

) 1
2

≤ 2
√
2

( ∞∑
k=1

(λ3
k |φk|)2

) 1
2

+2
√
2T ∥p(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+2(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
2T

 T∫
0

∞∑
k=1

(λ3
k |fk(τ)|)2dτ


1
2

+2(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
2T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+2(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
2T ∥a(t)∥C[0,T ]

 T∫
0

∞∑
k=1

(λ3
k |gk(τ)|)2dτ


1
2

, (27)

∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]


∥∥∥∥∥∥(c(t)h′

1(t)− f(0, t))

1∫
0

H(x)g(x, t)dx

∥∥∥∥∥∥
C[0,T ]

+

∥∥∥∥∥∥(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)g(0, t))

∥∥∥∥∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

∥H(x)∥C[0,1] (∥g(x, t)∥C(DT ) + ∥g(0, t)∥C[0,T ])

( ∞∑
k=1

(λ3
k |φk|)2

) 1
2

+T ∥p(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2
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+(1 + δ)
√
T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

 T∫
0

∞∑
k=1

(λ3
k |fk(τ)|)2dτ


1
2

+(1 + δ)T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+(1 + δ)
√
T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

∥a(t)∥C[0,T ]

 T∫
0

∞∑
k=1

(λ3
k |gk(τ)|)2dτ


1
2


 , (28)

∥∥∥b̃(t)∥∥∥
C[0,T ]

≤
∥∥[h(t)]−1

∥∥
C[0,T ]


∥∥∥∥∥∥((c(t)h′

2(t)−
1∫

0

H(x)f(x, t)dx)h1(t))

∥∥∥∥∥∥
C[0,T ]

+ ∥(c(t)h′
1(t)− f(0, t)h2(t))∥C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

(∥H(x)∥C[0,1] ∥h1(t)∥C[0,T ] + ∥h2(t)∥C[0,T ])

( ∞∑
k=1

(λ3
k |φk|)2

) 1
2

+T ∥p(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+(1 + δ)
√
T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

 T∫
0

∞∑
k=1

(λ3
k |fk(τ)|)2dτ


1
2

+(1 + δ)T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+(1 + δ)
√
T

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

∥a(t)∥C[0,T ]

 T∫
0

∞∑
k=1

(λ3
k |gk(τ)|)2dτ


1
2


 , (29)

holds true.
Now, taking into account H1) - H4), the estimates (27)–(29) can be written in the

form:
∥ũ(x, t)∥B3

2,T
≤ A1(T )

+B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C1(T ) ∥u(x, t)∥B3
2,T

+D1(T ) ∥b(t)∥C[0,T ] , (30)

∥ã(t)∥C[0,T ] ≤ A2(T )

+B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C2(T ) ∥u(x, t)∥B3
2,T

+D2(T ) ∥b(t)∥C[0,T ] , (31)
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C[0,T ]

≤ A3(T )

+B3(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C3(T ) ∥u(x, t)∥B3
2,T

+D3(T ) ∥b(t)∥C[0,T ] , (32)

where

A1(T ) = 2
√
2
∥∥∥φ(3)(x)

∥∥∥
L2(0,1)

+ 2
√
2T (1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

∥fxxx(x, t)∥L2(DT ) ,

B1(T ) = 2
√
2(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

T,

C1(T ) =
√
6T ∥p(t)∥C[0,T ] ,

D1(T ) = 2
√
2T (1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

∥gxxx(x, t)∥L2(DT ) ,

A2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]


∥∥∥∥∥∥(c(t)h′

1(t)− f(0, t))

1∫
0

H(x)g(x, t)dx

∥∥∥∥∥∥
C[0,T ]

+

∥∥∥∥∥∥(c(t)h′
2(t)−

1∫
0

H(x)f(x, t)dx)g(0, t))

∥∥∥∥∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

∥H(x)∥C[0,1] (∥g(x, t)∥C(DT ) + ∥g(0, t)∥C[0,T ])

×

[∥∥∥φ(3)(x)
∥∥∥
L2(0,1)

+ (1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
T ∥fxxx(x, t)∥L2(DT )

]}
,

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

∥H(x)∥C[0,1]

×(∥g(x, t)∥C(DT ) + ∥g(0, t)∥C[0,T ])(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

T,

C2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

∥H(x)∥C[0,1]

×(∥g(x, t)∥C(DT ) + ∥g(0, t)∥C[0,T ]) ∥p(t)∥C[0,T ] T,

D2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

∥H(x)∥C[0,1]
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×(∥g(x, t)∥C(DT ) + ∥g(0, t)∥C[0,T ])(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
T ∥gxxx(x, t)∥L2(DT ) ,

A3(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]


∥∥∥∥∥∥(c(t)h′

2(t)−
1∫

0

H(x)f(x, t)dx)h1(t))

∥∥∥∥∥∥
C[0,T ]

+ ∥(c(t)h′
1(t)− f(0, t)h2(t))∥C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2

(∥H(x)∥C[0,1] ∥h1(t)∥C[0,T ] + ∥h2(t)∥C[0,T ])

×

[∥∥∥φ(3)(x)
∥∥∥
L2(0,1)

+ (1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

√
T ∥fxxx(x, t)∥L2(DT )

]}
,

B3(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×(∥H(x)∥C[0,1] ∥h1(t)∥C[0,T ] + ∥h2(t)∥C[0,T ])(1 + δ)

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

T,

C3(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×(∥H(x)∥C[0,1] ∥h1(t)∥C[0,T ] + ∥h2(t)∥C[0,T ]) ∥p(t)∥C[0,T ] T,

D3(T ) = (1 + δ)
∥∥[h(t)]−1

∥∥
C[0,T ]

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×(∥H(x)∥C[0,1] ∥h1(t)∥C[0,T ] + ∥h2(t)∥C[0,T ])
√
T ∥gxxx(x, t)∥L2(DT ) .

Further, estimates (30)–(32) imply that

∥ũ(x, t)∥B3
2,T

+ ∥ã(t)∥C[0,T ] +
∥∥∥b̃(t)∥∥∥

C[0,T ]
≤ A(T )

+B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C(T ) ∥u(x, t)∥B3
2,T

+D(T ) ∥b(t)∥C[0,T ] , (33)

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T ),

C(T ) = C1(T ) + C2(T ) + C3(T ), D(T ) = D1(T ) +D2(T ) +D3(T ).

Let us prove the following theorem.

Theorem 2. Let the conditions H1) - H4) and the condition

((A(T ) + 2)B(T ) + C(T ) +D(T ))(A(T ) + 2) < 1, (34)

be fulfilled. Then, problem (1)–(3), (8), (9) has a unique solution in the ball K = KR

(∥z∥E3
T
≤ A(T ) + 2).
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Proof. First, we write the system of equations (22), (25), (26) in the operator form

z = Φz, (35)

where z = {u, a, b}. The components Φi(u, a, b), i = 1, 2, 3 of operator Φ(u, a, b) defined
by the right side of equations (22), (25), and (26), respectively.

Now, consider the operator Φ(u, a, b) in the ball K = KR of the space E3
T and show

that the operator Φ takes the elements of the ball K = KR into itself. Similar to (33),
we obtain that for any z ∈ KR the following inequality holds

∥Φz∥E3
T
≤ A(T )

+B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C(T ) ∥u(x, t)∥B3
2,T

+D(T ) ∥b(t)∥C[0,T ]

≤ A(T ) +B(T )(A(T ) + 2)2 + C(T )(A(T ) + 2) +D(T )(A(T ) + 2).

Then by (34), from last estimate it is clear that the operator Φ acts in a ball K = KR

and it can be show that the operator Φ is contractive. Indeed, it is clear that for any
z1, z2 ∈ KR the inequality

∥Φz1 − Φz2∥E3
T
≤ (B(T )(A(T ) + 2) + C(T ) +D(T ))

×(∥u1(x, t)− u2(x, t)∥B3
2,T

+ ∥a1(t)− a2(t)∥C[0,T ] + ∥b1(t)− b2(t)∥C[0,T ])

is satisfied. In turn, this means that, by virtue of (34), the operator Φ is contractive.
Therefore, the operator Φ satisfies assertions of the contraction mapping principle in

the ball K = KR. That is why the operator Φ has a unique fixed point {z} = {u, a, b}
in the ball K = KR, which is a unique solution of equation (35); i.e. {z} = {u, a, b} is a
unique solution of the system (22), (25), (26) in the ball K = KR.

Thus, the function u(x, t) as an element of space B3
2,T is continuous and has continuous

derivatives ux(x, t) and uxx(x, t) in DT .
On the other hand, from equation (19) it is easy to see that( ∞∑

k=1

(λk ∥u′
k(t)∥C[0,T ])

2

) 1
2

≤
√
2

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

( ∞∑
k=1

(λ3
k ∥uk(t)∥C[0,T ])

2

) 1
2

+
√
2

∥∥∥∥ 1

c(t)

∥∥∥∥
C[0,T ]

∥∥∥∥fx(x, t) + a(t)ux(x, t) + b(t)gx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

< +∞.

Thus, the function ut(x, t) is continuous in DT .
It can be verified that Eq. (1) and conditions (2), (3), (8), (9) are satisfied in the

usual sense. Therefore, {u(x, t), a(t), b(t)} is a solution to problem (1)–(3), (8), (9) and
by the corollary of Lemma 2, it is unique in the ball K = KR. The theorem is proved.

Theorem 3. Let all assertions of Theorem 2 and compatibility conditions (6), (7) be sat-
isfied, then problem (1)–(5) has a unique classical solution in the ball K = KR (∥z∥E3

T
≤

A(T ) + 2) of the space E3
T .
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3. Conclusions

The goal of this paper was to investigate the unique solvability of an inverse boundary
value problem for a second order parabolic equation with nonlocal boundary conditions.
First, the original problem was reduced to an auxiliary problem with trivial data. Then
using the Fourier method and contraction mappings principle, the existence and unique-
ness theorem for auxiliary problem is proved. Further, on the basis of the equivalency
of these problems, the existence and uniqueness theorem for the classical solution of the
original inverse boundary value problem is established.
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