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Abstract. A chemical-technological process taking place in a chemical reactor with a
chemical reaction of the second order is considered. A one-dimensional one-parameter
diffusion model of the hydrodynamic flow in the reactor is proposed for the mathemati-
cal description of this process. Within the framework of the proposed model, the inverse
problem is posed to determine the concentration of the selected reagent in the incoming
flow, ensuring the implementation of a predetermined hydrodynamic regime at the reactor
outlet. A discrete analogue of the inverse problem is constructed and the resulting dif-
ference problem is presented as a variational problem with local regularization. A special
representation is proposed for the numerical solution of the variational problem. As a
result, an explicit formula is obtained for determining the approximate concentration of
the selected reagent in the incoming stream. The effectiveness of the proposed method is
illustrated by numerical calculations for model problems

Keywords: chemical reactor, second-order chemical reaction, one-parameter diffusion
model, boundary inverse problem, local regularization method
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1. Introduction

It is known that the central element in any chemical-technological system is a chemical
reactor, in which interrelated hydrodynamic, thermal, and diffusion processes are carried
out, with the help of which conditions are created for the chemical transformation of a
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substance, i.e. a chemical reaction [8], [9], [12]. However, the kinetics of the chemical-
technological process is mainly determined by the hydrodynamic regularity of the flow of
the reaction medium in the reactor. In chemical technology, a large number of different
types and designs of chemical reactors are used, which are classified according to a number
of characteristics.

Currently, the most common classification of chemical reactors is based on the hy-
drodynamic mode of movement of the reaction medium in reactors. To describe various
hydrodynamic flows in chemical reactors, models are used: ideal mixing; ideal displace-
ment; diffusion models; cell models; combined models [5], [7], [16], [18]. One-parameter
and two-parameter diffusion models are mainly used to describe most of the real hydro-
dynamic flows in chemical reactors. According to the one-parameter diffusion model, the
mixing of reagents in reactors occurs only in the longitudinal direction. And according to
the two-parameter diffusion model, longitudinal and radial mixing of reagents occurs si-
multaneously in the hydrodynamic flow. Diffusion models accurately reflect the structure
of hydrodynamic flows in many real reactors: film, spray, bubbling columns, extractors,
etc. [8], [12].

When modeling the processes occurring in chemical reactors, an important step is
considered to be the provision of appropriate mathematical models with the necessary
quantitative information, i.e. the determination of the parameters of mathematical mod-
els. Usually, the parameters of a mathematical model quantitatively and unambiguously
describe certain characteristics of a chemical-technological process.

The determination of the parameters of mathematical models is a defining moment,
on which the adequacy of the constructed mathematical model and the effectiveness
of the control of the chemical process using the constructed model largely depend. In
this regard, the creation of one or another hydrodynamic mode of operation of reactors
using controlling the parameters of mathematical models of chemical and technologi-
cal processes is of great practical importance. In this paper, the problem of creating a
predetermined reactor operation mode using a controlled parameter of a one-parameter
diffusion model of hydrodynamic flow is investigated.

2. Problem Statement

Suppose that a chemical reactor, which is a tubular apparatus, continuously receives
a reaction stream. The incoming flow moves only in one direction along the length of
the reactor and a second-order chemical reaction takes place with the participation of
the reagent under study in the flow. It is assumed that the change in the concentration
of the selected reagent in the reactor occurs due to its transfer by the reaction medium
(convective transfer) in the direction coinciding with the direction of the general flow and
as a result of its transfer by diffusion (diffusion transfer). In the reactor, only longitudinal
mixing of the reagent under study in the reaction mixture takes place and the values of
the parameters of the reaction mixture along the reactor cross-section are the same. The
reactor operates in an isothermal mode and, by the laws of the chemical reaction, a
certain distribution of concentrations of reagents involved in the reaction is established
along the length of the reactor. To describe the process occurring in this chemical reactor,
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we use a one-dimensional, one-parameter diffusion model of the hydrodynamic flow of
the reaction medium, taking into account the flow of a second-order chemical reaction

∂ψ(x, t)

∂t
+ ν(t)

∂ψ(x, t)

∂x
+ kψ2(x, t) = d

∂2ψ(x, t)

∂x2
, 0 < x < l, 0 < t ≤ T, (1)

where ψ(x, t) is the concentration of the reagent under study, v(t)– the rate of the reaction
flow in the reactor, d– the coefficient of turbulent diffusion, k – the rate constant of the
chemical reaction, l– the length of the chemical reactor, x– the coordinate along which
the reaction flow moves, t– time.

Assume that at the initial moment, the distribution of the reagent concentration
along the length of the reactor is known, i.e., for equation (1) we have the following
initial condition.

ψ(x, 0) = ϕ(x), 0 ≤ x ≤ l. (2)

The boundary conditions at the reactor inlet and outlet are formulated according to the
Danckverts condition: the sum of the flows of matter approaching the reactor boundary
should be equal to the flow of matter departing from the boundary [2], [7]. As a result,
we will have.

ν(t)ψe(t) + d
∂ψ(0, t)

∂x
= v(t)ψ(0, t), (3)

∂ψ(l, t)

∂x
= 0, (4)

where ψe(t) is the concentration of the selected reagent in the incoming stream. If we
set the functions v(t), ψe(t), ϕ(x) and values of the constant parameters d, k, then
by solving the problem (1)-(4), we can find the function ψ(x, t), i.e. the distribution
of the reagent concentration along the length of the reactor. However, for chemical-
technological systems, the task of determining the hydrodynamic condition at the reactor
inlet necessary for the implementation of a predetermined hydrodynamic regime at the
reactor outlet is important. In this regard, within the framework of model (1)-(4), we set
the following task:

determine the concentration of the selected reagent ψe(t) in the incoming stream so
that the concentration of the reagent at the reactor outlet, along with condition (4),
satisfies the additional condition

ψ(l, t) = f(t). (5)

Thus, the task is to determine the functions ψ(x, t) and ψe(t), satisfying equation (1)
and conditions (2)-(5). Problem (1)-(5) belongs to the class of boundary inverse prob-
lems [1], [6], [15]. The correctness of the formulation of boundary inverse problems and
their solutions’ existence and uniqueness in various functional classes are investigated in
[6], [10], [11], [13], [14]. Numerical methods for solving boundary inverse problems for
parabolic equations are considered in many papers [1], [3], [4], [15], [17].
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3. Method for Solving the Problem

Assuming the existence of a solution and unambiguous solvability of the boundary in-
verse problem (1)–(5), we first construct its discrete analog by the method of difference
approximation. To this end, we introduce a uniform space-time difference grid

ω = {(xi, tj) : xi = i∆x, tj = j∆t, i = 0, 1, 2, ...n, j = 0, 1, 2, ...m}

in a rectangular area {0 ≤ x ≤ l, 0 ≤ t ≤ T} with steps ∆x = l/n and ∆t = T/m.
To obtain a linear difference problem as a discrete analog of the problem (1)–(4), we

use explicit-implicit approximations in time. To this end, the convective and diffusion
terms in equation (1) are implicitly approximated, and the nonlinear term kψ2(x, t),
which describes a chemical reaction process, is explicitly approximated in time. As a
result, we get a discrete analog of the problem (1)–(5) on the grid ω

ψj
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i

∆t
+ vj

ψj
i − ψj

i−1
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+ k(ψj−1

i )2 = d
ψj
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i = 1, 2, . . .n− 1,
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0, (7)

ψj
n − ψj

n−1
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ψj
n = f j , j = 1, 2, ...,m, (9)

ψ0
i = ϕi, i = 0, 2, ..., n, (10)

where ψj
i ≈ ψ(xi, tj), ϕi = ϕ(xi), f

j = f(tj), ψ
j
e ≈ ψe(tj), v

j = v(tj).
The resulting system of difference equations for each fixed value j, j = 1, 2, ...,m is

a system of linear algebraic equations in which the approximate values of the desired
functions ψ(x, t) and ψe(t) in the nodes of the difference grid act as unknowns, i.e. ψj

i ,
ψj
e. The difference problem (6)–(10) is formulated as a variational problem using local

regularization [11]. To do this, by (9), we introduce a smoothing functional in the form

J(ψj
e) =

[
ψj
n − f j

]2
+ γ(ψj

e)
2 → min (11)

where γ– regularization parameter. Thus, the task of determining the concentration of
the selected reagent ψj

e in the incoming stream is reduced to the task of minimizing the
smoothing functional (11) on each time layer j = 1, 2, ...,m when conditions (6)–(8) are
met. For the decomposition of the system of difference equations (6)–(8) into mutually
independent subsystems, its solution for each fixed value j = 1, 2, ...,m is represented as
[9], [12]

ψj
i = uji + ψj

ew
j
i , i = 0, 1, 2, ..., n, (12)

where uji , w
j
i and ψj

e – unknown variables.
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Substituting the ratio (12) into equation (6), we will have
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Substituting representation (12) into (7), (8), gives[
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Assume that the auxiliary variables uji , w
j
i are solutions to the following two independent

difference problems
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When using decomposition (12), equations (6) and conditions (7), (8) are executed au-
tomatically for any ψj

e. The difference problems (13)–(15) and (16)–(18) for each fixed
value j, j = 1, 2, ...,m are a system of linear algebraic equations with a tridiagonal matrix
and solutions of these systems can be found by the Thomas method [15]. Substituting
representation (12) into (11), we will have.

J(ψj
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[
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j
n − f j

]2
+ γ(ψj

e)
2 → min .
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The minimum of this functionality is achieved when the condition is met[
ujn + ψj

ew
j
n − f j

]
wj

n + γψj
e = 0.

From here we obtain a formula for determining the approximate value of the desired
function ψe(t) at t = tj , i.e. ψ

j
e.

ψj
e =

wj
n(f

j − ujn)

(wj
n)2 + γ

. (19)

Thus, a computational algorithm for solving a variational problem with local regu-
larization (6)–(8), (11) by definition ψj

i and ψj
e, i = 0, 1, 2, ..., n, on each time layer j,

j = 1, 2, ...,m, consists of the following stages:
I. The solutions of two independent difference problems (13)–(15) and (16)–(18) con-

cerning auxiliary variables uji , w
j
i , i = 0, 1, 2, ..., n are determined,

II. The formula (19) determines the approximate value of the desired function ψe(t)
at t = tj , i.e. ψ

j
e;

III. The values of variables ψj
i , i = 0, 1, 2, ..., n are calculated according to the formula

(12).

4. Results of Numerical Calculations

To test the operability of the proposed computational algorithm, numerical experiments
were carried out for model problems. Numerical experiments were carried out according
to the following scheme:

1) for a given functionψe(t), the solution of the problem (1)–(4) is determined, i.e.
the function ψ(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T ,

2) the found dependence f(t) = ψ(l, t) is taken as the exact input data for solving
the inverse problem of restoring ψe(t).

The first series of calculations was performed using undisturbed input data. In this
case, the value of the regularization parameter γ is assumed to be zero. The second series
of calculations were carried out when applying one of some function modeling the error
of experimental data

f̃(t) = f(t) + δξ(t)f(t) ,

where δ–the error level, ξ(t) is a random variable, modeled using a random number sensor.
In this case, the value of the regularization parameter is determined by the residual
principle [1], [3].

Numerical experiments were carried out on a space-time difference grid with steps of
∆t = 0.5 s,∆x = 0, 02m for the following exact values of the desired function ψe(t) = 0.4;
0.6; 0.85m3/kg at d = 0.5m2/s, k = 0, 5m3/(kg · s), v(t) = 0, 2m/s, φ(x) =0, l = 2m.

The results of numerical experiments conducted with undisturbed and perturbed
input data are presented in Table 1; in it t– the time, ψe–the exact values of the desired
functionψe(t), ψ̄e and ψ̃e– the calculated values for undisturbed and perturbed input
data. To perturb the input data, the following was used as the error level δ = 5 · 10−4.
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Table 1. Results of numerical calculations by definition ψe(t)

t, s ψe = 0.4m3/kg ψe = 0.6m3/kg ψe = 0.85m3/kg

ψ̄e ψ̃e ψ̄e ψ̃e ψ̄e ψ̃e

10 0.400 0.392 0.600 0.589 0.850 0.836
20 0.400 0.395 0.600 0.594 0.850 0.843
30 0.400 0.390 0.600 0.588 0.850 0.836
40 0.400 0.403 0.600 0.604 0.850 0.855
50 0.400 0.397 0.600 0.596 0.850 0.846
60 0.400 0.401 0.600 0.601 0.850 0.851
70 0.400 0.404 0.600 0.605 0.850 0.856
80 0.400 0.403 0.600 0.604 0.850 0.855
90 0.400 0.401 0.600 0.601 0.850 0.852
100 0.400 0.396 0.600 0.595 0.850 0.846

The results of the numerical experiment show that when using undisturbed input
data, the values of the desired function ψe(t) are restored exactly (2,4, and 6th columns
of Table 1). When using perturbed input data, in which the error has a fluctuating
character, the values of the desired function are restored with a certain error (3,5 and
7th columns of Table 1). However, as follows from the table, the maximum relative error
of restoring the values of the desired function ψe(t) does not exceed 2.5%. When the
error level decreases, the solution is restored more accurately. The analysis of the results
of the numerical experiment shows that the proposed computational algorithm ensures
the stability of the solution to input data errors.

To illustrate the possibility of practical application of the proposed method, numerical
calculations were carried out for a hypothetical chemical reactor. As input parameters
of the diffusion model of the hydrodynamic flow in the reactor, the following parameters
were taken: d = 0.38m2/s, k = 0, 2m3/(kg · s), v(t) = 0, 5m/s, φ(x) = 0, l = 3m.
It was necessary to determine the concentration of the selected reagent in the incoming
streamψe(t), which provided a predetermined mode at the reactor outlet, f(t) = 0.05; 0.1;
0.2; 0.3; 0.4; 0.5m3/kg. The results of numerical calculations carried out before entering
the stationary mode of the process in the reactor are presented in Table 2.

Table 2. Results of numerical calculations for a hypothetical reactor

f(t) 0.05 0.1 0.2 0.3 0.4 0.5
ψe(t) 0.053 0.112 0.252 0.427 0.644 0.913

The analysis of the results of numerical experimentation indicates that the proposed
computational algorithm makes it possible to determine the possibility of implementing
a predetermined hydrodynamic regime at the reactor outlet.

5. Conclusion

The inverse problem related to the determination of the parameter in the flow entering the
chemical reactor, which ensures the implementation of a predetermined hydrodynamic
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regime at the reactor outlet, is considered. According to the proposed computational
algorithm, the initial problem is first discretized, then the resulting difference problem is
presented as a variational problem with local regularization, and a special representation
is used to solve the variational problem. Unlike the global regularization method, where
the solution of the inverse problem is determined for all time points simultaneously,
the proposed approach takes into account the specifics of the inverse problem, and the
solution is determined sequentially for individual time points.
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