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Abstract. In this paper we give a characterization of two-weighted inequalities for
maximal operators in generalized weighted Morrey spaces on spaces of homogeneous type
Mp,φ

ω (X). We prove the boundedness of maximal operator M from the spaces Mp,φ1

ωδ
1

(X)

to the spaces Mp,φ2

ωδ
2

(X), where 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X).
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1. Introduction

In the 1970s, in order to extend the theory of Calderón-Zygmund singular integrals
to a more general setting, R.R. Coifman and G. Weiss introduced certain topological
measure spaces which are equipped with a metric which is compatible with the given
measure in a sense. These spaces are called spaces of homogeneous type. In this work,
we find necessary and sufficient conditions for the boundedness of Hardy-Littlewood
operators in generalized weighted Morrey spaces on spaces of homogeneous type. As a
generalization of Lp(Rn), the classical Morrey spaces were introduced by Ch.B. Morrey
[18] to study the local behavior of solutions to second-order elliptic partial differential
equations. Moreover, various Morrey spaces are defined in the process of study. V.S.
Guliyev, T. Mizuhara and E. Nakai [7], [17], [20] introduced generalized Morrey spaces
Mp,φ(Rn) (see, also [8], [24]).
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Recently, Y. Komori and S. Shirai [15] defined the weighted Morrey spaces Lp,κ
w (Rn)

and studied the boundedness of some classical operators such as the Hardy-Littlewood
maximal operator, the Calderón-Zygmund operator on these spaces. Also, V.S. Guliyev
in [9] first introduced the generalized weighted Morrey spaces Mp,φ

w (Rn) and studied the
boundedness of the sublinear operators and their higher order commutators generated
by Calderón-Zygmund operators and Riesz potentials in these spaces (see, also [1], [12],
[13]). Note that, V.S. Guliyev [9] gave the concept of generalized weighted Morrey space
which could be viewed as an extension of both Mp,φ

w (Rn) and Lp,κ
w (Rn).

In order to extend the traditional Euclidean space to build a general underlying
structure for the real harmonic analysis, the notion of spaces of homogeneous type was
introduced by R.R. Coifman and G. Weiss [3].

We say that X = (X, d, µ) is a space of homogeneous type if d is a quasi-metric on
X and µ is a positive measure satisfying the doubling condition, i.e. X is a topological
space endowed with a quasi-metric d and a positive measure µ such that

d (x, y) = d (y, x) ≥ 0 for all x, y ∈ X,

d (x, y) = 0 if and only if x = y ,

d (x, y) ≤ K1 (d (x, z) + d (z, y)) for all x, y, z ∈ X,

the balls B(x, r) = {y ∈ X : d (x, y) < r} , r > 0, form a basis of neighborhoods of the
point x, µ is defined on a σ-algebra of subsets of X which contains the balls, and

0 < µ (B(x, 2r)) < K2µ (B(x, r)) < ∞, (1)

where Ki ≥ 1 (i = 1, 2) are constants independent of x, y, z ∈ X and r > 0. As usual, the
dilation of a ball B = B(x, r) will be denoted by λB = B(x, λr) for every λ > 0.

Throughout this paper we always assume that µ(X) = ∞, the space of compactly
supported continuous function is dense in L1(X,µ) and that X is Q-homogeneous
(Q > 0), i.e.

K−1
3 rQ ≤ µ (B(x, r)) ≤ K3r

Q,

where K3 ≥ 1 is a constant independent of x and r. The n-dimensional Euclidean space
Rn is n-homogeneous.

Let (X, d, µ) be Q-homogeneous, 1 ≤ p < ∞, φ be a positive measurable function
on (0,∞) and ω be a non-negative measurable function on X. We denote by Mp,φ

ω

the generalized weighted Morrey space on spaces of homogeneous type, the space of all
functions f ∈ Lloc

p,ω(X) with finite norm

∥f∥Mp,φ
ω

= sup
x∈X,r>0

1

φ(x, r)∥ω∥Lp(B(x,r))
∥f∥Lp,ω(B(x,r)),

where the supremum is taken over all balls B(x, r) in X and Lp,ω(B(x, r)) denotes the
weighted Lp-space of measurable functions f for which

∥f∥Lp,ω(B(x,r)) ≡ ∥fχB(x,r)
∥Lp,ω(X) =

(∫
B(x,r)

|f(y)|pω(y)dµ (y)

) 1
p

.
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Moreover, by WMp,φ
ω we denote the weak generalized weighted Morrey space on spaces

of homogeneous type of all functions f ∈ WLloc
p,ω(X) with finite norm

∥f∥WMp,φ
ω

= sup
x∈X,r>0

1

φ(x, r)∥ω∥Lp(B(x,r))
∥f∥WLp,ω(B(x,r)),

where WLp,ω(B(x, r)) denotes the weak weighted Lp-space of measurable functions f for
which

∥f∥WLp,ω(B(x,r)) ≡ ∥fχB(x,r)
∥WLp,ω(X) = sup

t>0
t

(∫
{y∈B(x,r):|f(y)|>t}

|f(y)|pω(y)dµ (y)

) 1
p

.

Note that if ω(x) = χB(x,r), then Mp,φ
ω (X) = Mp,φ(X) is the generalized Morrey

space and if φ(x, r) =
(

rλ

µ(B(x,r))

) 1
p

, thenMp,φ
ω (X) = Lp,λ(X) is the classic Morrey space.

A characterization for fractional integral and its commutators in Orlicz and generalized
Orlicz-Morrey space on space of homogeneous type were investigated in [11].

Let f be a locally integrable function on X. The so-called of Hardy-Littlewood
maximal function is defined by the formula

Mf(x) = sup
r>0

1

µ (B (x, r))

∫
B(x,r)

|f(y)|dµ (y) ,

where µ (B (x, r)) is measure of the ball B(x, r).
In this paper we aim to give a characterization of two-weighted inequalities for

maximal operator in generalized weighted Morrey spaces on spaces of homogeneous type.
Two-weight norm inequalities for fractional maximal operators and singular integrals
on Lebesgue spaces were widely studied (see, for example [4], [5], [6], [14], [16]). The
weighted norm inequalities with different types of weights on Morrey spaces were also
studied (see, for example [21]). The two-weight norm inequality for the Hardy-Littlewood
maximal function on Morrey spaces was obtained in [25]. Two-weight norm inequalities on
weighted Morrey spaces for fractional maximal operators and fractional integral operators
were obtained in [23].

In the sequel we use the letter C for a positive constant, independent of appropriate
parameters and not necessary the same at each occurrence. For every p ∈ (1,∞) ,we
denote p′ the conjugate of p, i.e., 1

p + 1
p′ = 1. M(R+), M

+(R+) and M+(R+;↑) stand for
the set of Lebesgue-measurable functions on R+, and its subspaces of nonnegative and
nonnegative non-decreasing functions, respectively.

2. Preliminaries

Let (X, d, µ) be space of Q-homogeneous type as mentioned in Section 1. We now recall
the definition of Ap weight functions.
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Definition. The weight function ω belongs to the class Ap(X) for 1 ≤ p < ∞,
if

sup
x∈X,r>0

 1

µ (B (x, r))

∫
B(x,r)

ωp(y)dµ (y)


1
p
 1

µ (B (x, r))

∫
B(x,r)

ω−p′
(y)dµ (y)


1
p′

is finite and ω belongs to A1(X), if there exists a positive constant C such that for any
x ∈ X and r > 0

µ (B (x, r))
−1

∫
B(x,r)

ω(y)dµ (y) ≤ C ess sup
y∈B(x,r)

1

ω(y)
.

The weight function (ω1, ω2) belongs to the class Ãp(X) for 1 < p < ∞, if

sup
x∈X,r>0

 1

µ (B (x, r))

∫
B(x,r)

ωp
2(y)dµ (y)


1
p
 1

µ (B (x, r))

∫
B(x,r)

ω−p′

1 (y)dµ (y)


1
p′

is finite.
The following theorem was proved in [19].

Theorem 1. Let 1 ≤ p < ∞.
1) Then the operator M is bounded in Lp,ω(X) if and only if ω ∈ Ap(X).
2) Then the operator M is bounded from L1,ω(X) to WL1,ω(X) if and only if ω ∈

A1(X).

Lemma 1. [22] Let 1 < p < ∞ and (ω1, ω2) ∈ Ãp(X), then (ω−1
2 , ω−1

1 ) ∈ Ãp′(X), with
1
p + 1

p′ = 1.

Lemma 2. [22] Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). If q−1
p−1 = δ, then

(ω1, ω2) ∈ Ãq′(X), with 1
p + 1

p′ = 1.

Theorem 2. [22] Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X), then the operator
M is bounded from Lp,ωδ

1
(X) to Lp,ωδ

2
(X).

Let L∞,ω(R+) be the weighted L∞-space with the norm

∥g∥L∞,ω(R+) = ess sup
t>0

ω(t)g(t).

We denote

A =

{
φ ∈ M+(R+; ↑) : lim

t→0+
φ(t) = 0

}
.

Let u be a continuous and non-negative function on R+. We define the supremal operator
Su by

(Sug)(t) := ∥u g∥L∞(0,t), t ∈ (0,∞).
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The following theorem was proved in [2].

Theorem 3. [2] Suppose that v1 and v2 are nonnegative measurable functions such that
0 < ∥v1∥L∞(0,t) < ∞ for every t > 0. Let u be a continuous nonnegative function on R.
Then the operator Su is bounded from L∞,v1(R+) to L∞,v2(R+) on the cone A if and
only if ∥∥∥v2Su

(
∥v1∥−1

L∞(0,·)

)∥∥∥
L∞(R+)

< ∞.

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=

∫ t

0

g(s)w(s)ds, H∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞,

where w is a weight.

The following theorems was proved in [10].

Theorem 4. [10] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sup
s<τ<∞

v1(τ)
< ∞.

Theorem 5. [10] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t)g(t) (2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ t

0

w(s)ds

sup
0<τ<s

v1(τ)
< ∞.

Moreover, the value C = B is the best constant for (2).
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3. Two-Weighted Inequalities for Maximal Operators
in Generalized Weighted Morrey Spaces on Spaces of
Homogeneous Type

In this section we prove two-weighted inequalities for maximal operators in generalized
weighted Morrey spaces on spaces of homogeneous type. The following two-weighted local
estimates are valid.

Theorem 6. Let 1 < p < ∞, 0 < δ < 1 and (ω1, ω2) ∈ Ãp(X). Then

∥Mf∥L
p,ωδ

2
(B(x,r)) ≤ C∥ωδ

2∥Lp(B(x,r)) sup
t>r

∥f∥L
p,ωδ

1
(B(x,t))∥ωδ

2∥−1
Lp(B(x,t)) (3)

for every f ∈ Lp,ωδ
1
(X), where C does not depend on f, x and r.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χB(x,2kr)(y), f2(y) = f(y)χX\B(x,2kr)(y), r > 0,

and have

∥Mf∥L
p,ωδ

2
(B(x,r)) ≤ ∥Mf1∥L

p,ωδ
2
(B(x,r)) + ∥Mf2∥L

p,ωδ
2
(B(x,r)).

By Theorem 2 we obtain

∥Mf1∥L
p,ωδ

2
(B(x,r)) ≤ ∥Mf1∥L

p,ωδ
2
(X) ≤ C∥f1∥L

p,ωδ
1
(X) = C∥f∥L

p,ωδ
1
(B(x,2kr)), (4)

where C does not depend on f . From (4) we obtain

∥Mf1∥L
p,ωδ

2
(B(x,r)) ≤ C∥ωδ

2∥Lp(B(x,r)) sup
t>r

∥f∥L
p,ωδ

1
(B(x,t))∥ωδ

2∥−1
Lp(B(x,t)), (5)

which is easily obtained from the fact that ∥f∥L
p,ωδ

1
(B(x,2kr)) is non-decreasing in r,

therefore ∥f∥L
p,ωδ

1
(B(x,2kr)) on the right-hand side of (4) is dominated by the right-hand

side of (5).
For y ∈ B(x, r) we get

Mf2(y) = sup
t>0

µ (B (y, t))
−1
∫
B(y,t)

|f2(z)|dµ (z)

= sup
t>0

µ (B (y, t))
−1
∫

{B(x,2kr)∩B(y,t)

|f(z)|dµ (z)

≤ sup
t>r

µ (B (y, t))
−1
∫
B(x,2kt)

|f(z)|dµ (z)

≤ C sup
t>r

µ (B (y, 2kt))
−1
∫
B(x,2kt)

|f(z)|dµ (z)

= C sup
t>2kr

µ (B (y, t))
−1
∫
B(x,t)

|f(z)|dµ (z)
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from (1) the doubling condition.

By Hölder inequality we obtain

Mf2(y) ≤ C sup
t>2kr

µ (B (y, t))
−1 ∥f∥L

p,ωδ
1
(B(x,t))∥χB(x,t)ω

−δ
1 ∥Lp′ (X)

≤ C sup
t>r

t−Q∥f∥L
p,ωδ

1
(B(x,t))∥ω−δ

1 ∥Lp′ (B(x,t))

≤ C sup
t>r

∥f∥L
p,ωδ

1
(B(x,t))∥ωδ

2∥−1
Lp(B(x,t)).

Then we have

∥Mf2∥L
p,ωδ

2
(B(x,r)) ≤ C∥ωδ

2∥Lp(B(x,r)) sup
t>r

∥f∥L
p,ωδ

1
(B(x,t))∥ωδ

2∥−1
Lp(B(x,t)). (6)

From (5) and (6) we obtain (3). J

Theorem 7. Let 1 < p < ∞, 0 < δ < 1, (ω1, ω2) ∈ Ãp(X) and the function φ1(x, r)
and φ2(x, r) satisfy the condition

sup
t>r

ess inf
t<s<∞

φ1(x, s)∥ωδ
1∥Lp(B(x,s))

∥ωδ
2∥Lp(B(x,t))

≤ Cφ2(x, r), (7)

where C does not depend on x and t.

Then the operator M is bounded from the space Mp,φ1

ωδ
1

(X) to the space Mp,φ2

ωδ
2

(X).

Proof. Let f ∈ Mp,φ1

ωδ
1

(X). By (7), Theorems 3, 6 with v2 = 1
φ2(x,t)

, g = ∥f∥L
p,ωδ

1
(B(x,t)),

u = ∥ωδ
2∥−1

Lp(B(x,t)) and v1 = 1
φ1(x,t)∥ωδ

1∥Lp(B(x,t))
we get

∥Mf∥Mp,φ2

ωδ
2

(X)

≤ C sup
x∈X, r>0

∥ωδ
2∥Lp(B(x,r))

φ2(x, r)∥ωδ
2∥Lp(B(x,r))

sup
t>r

∥f∥L
p,ωδ

1
(B(x,t))∥ωδ

2∥−1
Lp(B(x,t))

≤ C sup
x∈X, r>0

1

φ1(x, r)∥ωδ
1∥Lp(B(x,r))

∥f∥L
p,ωδ

1
(B(x,r)) = C∥f∥Mp,φ1

ωδ
1

(X),

which completes the proof. J
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