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Abstract. In the paper, we derive sufficient conditions for well-posed and unique
solvability of a boundary-value problem with a bounded operator in the boundary
conditions for a class of fourth-order elliptic operator-differential equations. At the same
time, we make estimates for the norms of operators of intermediate derivatives closely
related to the solvability conditions, which are expressed using the properties of the
operator coefficients of the boundary-value problem.
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1. Introduction and Problem Statement

Let H be a separable Hilbert space with inner (scalar) product (x, y), x, y ∈ H, and A
be a positive-definite self-adjoint operator in H (A = A∗ ≥ cE, c > 0, E is the identity
operator). As is known, the domain of the operator Aγ (γ > 0) becomes the Hilbert
space Hγ with respect to the inner product (x, y)γ = (Aγx,Aγy) , x, y ∈ D(A

γ
).

Designate by L2 (R+;H) the Hilbert space of all vector functions defined on R+ with
values in H and with the norm

∥f∥L2(R+;H) =

(∫ +∞

0

∥f(t)∥2Hdt
)1/2

.

Further, let L (X,Y ) designates the set of linear bounded operators acting from a Hilbert
spaceX into another Hilbert space Y ; σ (·) is the spectrum of the operator (·); henceforth,
everywhere derivatives are understood in the sense of the theory of distributions in a
Hilbert space [17].

Elvin S. Rzayev
Institute of Mathematics and Mechanics, Baku, Azerbaijan
E-mail: Elvin.Rzayev88@gmail.com



98 Solvability of boundary-value problem with bounded operator in boundary conditions

Let us now introduce the following sets:

W 4
2 (R+;H) =

{
u (t) : u

(4)
(t) ∈ L2 (R+;H) , A

4
u (t) ∈ L2 (R+;H)

}
,

W 4
2,T (R+;H) =

=
{
u (t) : u (t) ∈W 4

2 (R+;H) , u (0) = 0, u′ (0) = Tu′′ (0) , T ∈ L
(
H3/2;H5/2

)}
.

Each of these sets, equipped with the norm

∥u∥W 4
2 (R+;H) =

(∥∥∥u(4)∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

)1/2

,

becomes a Hilbert space [17, Ch.1].
Let us consider the following boundary-value problem in the space H:

u(4) (t) +A4u (t) +

4∑
j=1

Aju
(4−j) (t) = f (t) , t ∈ R+, (1)

u (0) = 0, u′ (0) = Tu′′ (0) (2)

where A = A∗ ≥ cE, c > 0, T ∈ L
(
H3/2;H5/2

)
, Aj , j = 1, 2, 3, 4, are linear, generally

speaking, unbounded operators, f (t) ∈ L2 (R+;H) , u (t) ∈W 4
2 (R+;H) .

Definition. If the vector-function u(t) ∈W 4
2 (R+;H) satisfies Eq. (1) almost everywhere

in R+, and the boundary conditions (2) hold in the following sense:

lim
t→0

∥u (t)∥H7/2
= 0, lim

t→0
∥u′ (t)− Tu′′ (t)∥H5/2

= 0,

then u (t) will be called a regular solution of the boundary-value problem (1), (2).

Note that various solvability problems for second-order elliptic operator-differential
equations with operator boundary conditions are studied in detail in the works [8], [9],
[11], [13], [16], [21]-[24], [27], [28] as well as in references cited there. Similar questions
for higher-order operator-differential equations in the case when the coefficients in the
boundary conditions are only complex numbers are considered in a broad aspect in the
works [2]-[6], [12], [14], [15], [18]-[20], [25], [26] as well as in references cited there. However,
all these studies are far from complete. There are relatively few works dedicated to the
solvability of fourth-order elliptic operator-differential equations with operator boundary
conditions (see, for example, [1], [7], [10]).

In this paper, we derive sufficient conditions for the existence and uniqueness of a
regular solution to the boundary-value problem (1), (2), which are expressed by means
of the properties of its operator coefficients. Along the way, we construct an explicit
representation of the regular solution of the boundary-value problem (1), (2) for Aj= 0,
j = 1, 2, 3, 4.

It should be stressed that boundary-value problems of the form (1), (2) have a number
of applications, in particular, in the theory of elasticity.



E.S. Rzayev 99

2. Solvability of Boundary-Value Problem (1), (2) for
Aj = 0, j = 1, 2, 3, 4

First, we denote by P0 the operator acting from the space W 4
2,T (R+;H) into the space

L2 (R+;H) according to the rule

P0u (t) = u(4) (t) +A4u (t) , u (t) ∈W 4
2,T (R+;H) .

Lemma 1. The operator P0 : W 4
2,T (R+;H) → L2 (R+;H) is bounded.

Proof. The boundedness of the operator P0 : W 4
2,T (R+;H) → L2 (R+;H) follows

directly from the following inequality using the Cauchy-Schwarz inequality:

∥P0u∥2L2(R+;H) =
∥∥∥u(4) +A4u

∥∥∥2
L2(R+;H)

=

=
∥∥∥u(4)∥∥∥2

L2(R+;H)
+ 2Re

(
u(4), A4u

)
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

≤

≤ 2

(∥∥∥u(4)∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

)
= 2∥u∥2W 4

2 (R+;H).

J

The following lemma holds.

Lemma 2. Let C = A5/2TA−3/2 and the point − 1√
2
/∈ σ(C). Then the equation

P0u (t) = 0 has a zero (trivial) solution from the space W 4
2,T (R+;H) .

Proof. Obviously, the general solution of the equation P0u (t) = 0 from the space
W 4

2,T (R+;H) is represented as follows:

u0 (t) = eω1tAφ0 + eω2tAφ1,

where e−tA is a strongly continuous semigroup of bounded operators generated by the
operator −A,

φ0, φ1 ∈ H7/2,

ω1 = − 1√
2
+

1√
2
i, ω2 = − 1√

2
− 1√

2
i.

From the boundary conditions (2), we have:{
φ0 + φ1 = 0,
ω1Aφ0 + ω2Aφ1 = TA2

(
ω2
1φ0 + ω2

2φ1

)
.

(3)

As a result, from system (3), we obtain:

φ1 = −φ0, (4)(
E +

√
2C

)
A7/2φ0 = 0. (5)

Since, according to the condition of the lemma, the point − 1√
2
/∈ σ (C), then from Eq. (5)

we have that φ0 = 0. Then from (4) we obtain that φ1 = 0. Thus, u0 (t) = 0. J
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The following theorem holds.

Theorem 1. Let C = A5/2TA−3/2 and the point − 1√
2
/∈ σ(C). Then the equation

P0u (t) = f(t) for any f(t) ∈ L2 (R+;H) has a unique regular solution represented in
the form

u (t) =

∫ +∞

0

G (t, s) f (s)ds+
1

4 (ω1 − ω2)
eω1tAA− 7

2

(
E +

√
2C

)−1

A
5
2×

×
[
−ω4

ω3

∫ +∞

0

(
e−ω4As − e−ω3As

) (
A−2f (s)

)
ds +

+T

∫ +∞

0

(
ω2e

−ω4As + ω1e
−ω3As

) (
A−1f (s)

)
ds−

−ω2
2TA2

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

]
−

−1

4
eω2tA

[
1

ω1 − ω2
A

− 7
2
(
E +

√
2C

)−1

A
5
2×

×
(
−ω4

ω3

∫ +∞

0

(
e−ω4As − e−ω3As

) (
A−2f (s)

)
ds+

+T

∫ +∞

0

(
ω2e

−ω4As + ω1e
−ω3As

) (
A−1f (s)

)
ds−

−ω2
2TA2

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

)
+

+

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

]
,

where

G (t, s) =
1

4


−
(
eω2A(t−s)

ω1
+
eω1A(t−s)

ω2

)
A−3, if t− s > 0,

(
eω4A(t−s)

ω3
+
eω3A(t−s)

ω4

)
A−3, if t− s < 0,

ω1 = − 1√
2
+

1√
2
i, ω2 = − 1√

2
− 1√

2
i, ω3 =

1√
2
+

1√
2
i, ω4 =

1√
2
− 1√

2
i.
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Proof. For the convenience of further writings, we consider the operator pencil

P0 (λ;A) = λ4E +A4.

Then the boundary-value problem (1), (2) for Aj = 0, j = 1, 2, 3, 4, can be rewritten as
an operator equation

P0

(
d

dt
;A

)
u (t) = f (t) , (6)

where f (t) ∈ L2 (R+;H) , u (t) ∈W 4
2,T (R+;H) .

By Lemma 2, the homogeneous equation

P0

(
d

dt
;A

)
u (t) = 0

has only a trivial solution from the space W 4
2,T (R+;H) .

Let us show that Eq. (6) has a solution from the space W 4
2,T (R+;H) for any f(t) ∈

L2 (R+;H).
First, we construct a particular solution of Eq. (1) for Aj = 0, j = 1, 2, 3, 4.
We extend the function f(t) with a zero for t < 0 and consider Eq. (6) on the entire

axis. Since the operator A does not depend on t, this extension to the negative half-line
is well defined. Applying the direct and inverse Fourier transforms, we obtain

u0 (t) =
1

2π

∫ +∞

−∞
P0

−1 (iξ;A)

(∫ +∞

0

f (s)e−iξsds

)
eiξtdξ, t ∈ R.

It is clear that this vector function satisfies Eq. (6) almost everywhere in R.
Let us show that u0 (t) ∈W 4

2 (R;H) .
Indeed, by the Plancherel theorem we have:

∥u0∥2W 4
2 (R;H) =

∥∥∥u0(4)∥∥∥2
L2(R;H)

+
∥∥A4u0

∥∥2
L2(R;H)

=

=
∥∥ξ4û0 (ξ)∥∥2L2(R;H)

+
∥∥A4û0 (ξ)

∥∥2
L2(R;H)

≤

≤ sup
ξ∈R

∥∥ξ4P0
−1 (iξ;A)

∥∥2
H→H

∥∥∥f̂ (ξ)∥∥∥2
L2(R;H)

+

+sup
ξ∈R

∥∥A4P0
−1 (iξ;A)

∥∥2
H→H

∥∥∥f̂ (ξ)∥∥∥2
L2(R;H)

, (7)

where û0(ξ) and f̂(ξ) are Fourier transforms of functions u0 (t) and f(t), respectively.
Since, from the spectral theory of self-adjoint operators, for any ξ ∈ R it follows that∥∥ξ4P0

−1 (iξ;A)
∥∥ = sup

µ∈σ(A)

(
ξ4

(
ξ4 + µ4

))−1 ≤ 1,

∥∥A4P0
−1 (iξ;A)

∥∥ = sup
µ∈σ(A)

(
µ4

(
ξ4 + µ4

))−1 ≤ 1,
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then from (7) we obtain:

∥u0∥W 4
2 (R;H) ≤ const∥f∥L2(R;H).

Therefore, u0 (t) ∈W 4
2 (R;H) .

It’s obvious that

u0 (t) =

∫ +∞

0

(
1

2π

∫ +∞

−∞
(ξ

4
E +A4)

−1
eiξ(t−s)dξ

)
f (s) ds, t ∈ R.

We calculate the integral

G (t, s) =
1

2π

∫ +∞

−∞
(ξ

4
E +A4)

−1
eiξ(t−s)dξ, t ∈ R. (8)

Let µ ∈ σ (A) . Then

G (t, s) =
1

2π

∫ +∞

−∞

eiξ(t−s)

ξ4 + µ4
dξ. (9)

First, to calculate the integral (9), we choose the integration contours on the upper
t−s > 0 and lower t−s < 0 half-planes, and then apply the residue theorem. As one can
see, the poles z1 = ω1µ and z2 = ω3µ are in the region that is limited by the integration
contour lying in the upper half-plane t− s > 0, while the poles z3 = ω2µ and z4 = ω4µ
are in the region that is limited by the integration contour lying in the lower half-plane
t− s < 0 (see Fig. 1 and Fig. 2).

-R R -R R

Contours on the upper half-plane Contours on the lower half-plane
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It is clear that on the upper half-plane t− s > 0, integral (9) along the contour γ1 is
equal to the sum of two integrals:

1

2π

∫
γ1

eiξ(t−s)

ξ4 + µ4
dξ =

1

2π

∫ R

−R

eiξ(t−s)

ξ4 + µ4
dξ +

∫
semi-circle γ1

eiξ(t−s)

ξ4 + µ4
dξ

 .
Note that along the semi-circle γ1, ∀ξ : |ξ| = R, and since∣∣ξ4 + µ4

∣∣ ≥ R4 − µ4,
∣∣ξ4 + µ4

∣∣−1 ≤ (R
4 − µ4)

−1
,

then∣∣∣∣∣∣∣
∫

semi-circle γ1

eiξ(t−s)

ξ4 + µ4
dξ

∣∣∣∣∣∣∣ ≤
∫

semi-circle γ1

∣∣∣∣ eiξ(t−s)

ξ4 + µ4

∣∣∣∣dξ ≤
∫

semi-circle γ1

(R
4 − µ4)

−1
dξ =

= (R
4 − µ4)

−1
∫
dξ

semi-circle γ1

=
πR

R4 − µ4
→0 when R→ ∞.

Thus,

lim
R→∞

∫
semi-circle γ1

eiξ(t−s)

ξ4 + µ4
dξ = 0.

Therefore, when R→ ∞

1

2π

∫
γ1

eiξ(t−s)

ξ4 + µ4
dξ =

1

2π

∫ +∞

−∞

eiξ(t−s)

ξ4 + µ4
dξ .

Since

res
ξ=ω1µ

eiξ(t−s)

ξ4 + µ4
=
eiω1µ(t−s)

4ω3
1µ

3
=
eω2µ(t−s)

4ω3µ3
,

res
ξ=ω3µ

eiξ(t−s)

ξ4 + µ4
=
eiω3µ(t−s)

4ω3
3µ

3
=
eω1µ(t−s)

4ω1µ3
,

then
1

2π

∫ +∞

−∞

eiξ(t−s)

ξ4 + µ4
dξ=− 1

4

(
eω2µ(t−s)

ω1µ3
+
eω1µ(t−s)

ω2µ3

)
.

Similarly, on the lower half-plane t − s < 0, the integral (9) along the contour γ2 is
equal to the sum of two integrals:

1

2π

∫
γ2

eiξ(t−s)

ξ4 + µ4
dξ =

1

2π

 ∫ −R

R

eiξ(t−s)

ξ4 + µ4
dξ +

∫
semi-circle γ2

eiξ(t−s)

ξ4 + µ4
dξ

 =
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=
1

2π

− ∫ R

−R

eiξ(t−s)

ξ4 + µ4
dξ +

∫
semi-circle γ2

eiξ(t−s)

ξ4 + µ4
dξ

 .
Carrying out the corresponding reasoning, we get:

lim
R→∞

∫
semi-circle γ2

eiξ(t−s)

ξ4 + µ4
dξ = 0.

Therefore, when R→ ∞

1

2π

∫
γ2

eiξ(t−s)

ξ4 + µ4
dξ = − 1

2π

∫ +∞

−∞

eiξ(t−s)

ξ4 + µ4
dξ.

And since

res
ξ=ω2µ

eiξ(t−s)

ξ4 + µ4
=
eiω2µ(t−s)

4ω3
2µ

3
=
eω4µ(t−s)

4ω4µ3
,

res
ξ=ω4µ

eiξ(t−s)

ξ4 + µ4
=
eiω4µ(t−s)

4ω3
4µ

3
=
eω3µ(t−s)

4ω2µ3
,

then

− 1

2π

∫ +∞

−∞

eiξ(t−s)

ξ4 + µ4
dξ=

1

4

(
eω4µ(t−s)

ω3µ3
+
eω3µ(t−s)

ω4µ3

)
.

Thus, using the spectral expansion of the operator A, for (8) we obtain the
representation

G (t, s) =
1

4


−
(
eω2A(t−s)

ω1
+
eω1A(t−s)

ω2

)
A−3, if t− s > 0,(

eω4A(t−s)

ω3
+
eω3A(t−s)

ω4

)
A−3, if t− s < 0.

(10)

Therefore,

u0 (t) =

∫ +∞

0

G (t, s)f (s) ds,

where G (t, s) is defined in (10).
Obviously, u0 (t) ∈W 4

2 (R+;H) . Then according to the Theorem on traces [17, Ch.1]

u
(4−j)
0 (0) ∈ H7/2−j , j = 0, 1, 2, 3.

We are looking for the general solution to equation (6) in the form

u (t) = u0 (t) + eω1tAψ0 + eω2tAψ1 ,

where ψ0, ψ1 ∈ H7/2. From the boundary conditions (2), we have{
u0 (0) + ψ0 + ψ1 = 0,
u′0 (0) + ω1Aψ0 + ω2Aψ1 = T

(
u′′0 (0) + ω2

1A
2ψ0 + ω2

2A
2ψ1

)
.

(11)
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System (11) can be rewritten in the following form:{
ψ0 + ψ1 = −u0 (0) ,
ω1Aψ0 + ω2Aψ1 − ω1

2TA2ψ0−ω2
2TA2ψ1 = −u′0 (0) + Tu′′0 (0) .

(12)

Then from system (12), taking into account that the point − 1√
2
/∈ σ (C), we find

ψ0 =
1

4 (ω1 − ω2)
A− 7

2

(
E +

√
2C

)−1

A
5
2×

×
[
−ω4

ω3

∫ +∞

0

(
e−ω4As − e−ω3As

) (
A−2f (s)

)
ds +

+T

∫ +∞

0

(
ω2e

−ω4As + ω1e
−ω3As

) (
A−1f (s)

)
ds−

−ω2
2TA2

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

]
,

ψ1 = −
(
ψ0 +

1

4

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

)
.

As a result, we obtain the desired representation of the solution of equation (6)

u (t) =

∫ +∞

0

G (t, s) f (s)ds+
1

4 (ω1 − ω2)
eω1tAA− 7

2

(
E +

√
2C

)−1

A
5
2×

×
[
−ω4

ω3

∫ +∞

0

(
e−ω4As − e−ω3As

) (
A−2f (s)

)
ds +

+T

∫ +∞

0

(
ω2e

−ω4As + ω1e
−ω3As

) (
A−1f (s)

)
ds−

−ω2
2TA2

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

]
−

−1

4
eω2tA

[
1

ω1 − ω2
A

− 7
2
(
E +

√
2C

)−1

A
5
2×

×
(
−ω4

ω3

∫ +∞

0

(
e−ω4As − e−ω3As

) (
A−2f (s)

)
ds+

+T

∫ +∞

0

(
ω2e

−ω4As + ω1e
−ω3As

) (
A−1f (s)

)
ds−

−ω2
2TA2

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

)
+

+

∫ +∞

0

(
ω4e

−ω4As + ω3e
−ω3As

) (
A−3f (s)

)
ds

]
,
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where

G (t, s) =
1

4


−
(
eω2A(t−s)

ω1
+
eω1A(t−s)

ω2

)
A−3, if t− s > 0,(

eω4A(t−s)

ω3
+
eω3A(t−s)

ω4

)
A−3, if t− s < 0,

and we have the inequality

∥u∥W 4
2 (R+;H) ≤ const∥f∥L2(R+;H).

J

Taking into account Theorem 1 in combination with Lemmas 1 and 2, we can
formulate the following theorem.

Theorem 2. Let C = A5/2TA−3/2 and the point − 1√
2
/∈ σ(C). Then the operator P0

implements an isomorphism between the spaces W 4
2,T (R+;H) and L2 (R+;H) .

From Theorem 2, we have

Corollary 1. The norm ∥P0u∥L2(R+;H) is equivalent to the norm ∥u∥W 4
2 (R+;H) in the

space W 4
2,T (R+;H) .

Since the operators of intermediate derivatives

Aj d
4−j

dt4−j
: W 4

2,T (R+;H) → L2 (R+;H) , j = 1, 2, 3, 4,

are continuous [17], their norms can be estimated in terms of the norm ∥P0u∥L2(R+;H),
based on the Corollary 1.

Theorem 3. Let C = A5/2TA−3/2 and Re C ≥ 0. Then for any u (t) ∈W 4
2,T (R+;H)

the following inequalities hold:∥∥∥Aju(4−j)
∥∥∥
L2(R+;H)

≤ cj∥P0u∥L2(R+;H), j = 1, 2, 3, 4, (13)

where

c1 = 1, c2 =
1

2
, c3 =

1√
2
, c4 = 1.

Proof. First, multiply both sides of the equation

u(4) (t) +A4u (t) = f(t)

scalarly by A4u (t) in the space L2 (R+;H) and integrate by parts taking into account
that u (t) ∈W 4

2,T (R+;H) . Then, taking into account the condition Re C ≥ 0, we have:

Re
(
P0u, A

4u
)
L2(R+;H)

= Re
(
u(4) +A4u, A4u

)
L2(R+;H)

=
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= Re
(
CA3/2u

′′
(0) , A3/2u

′′
(0)

)
+

∥∥∥A2u
′′
∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

≥

≥
∥∥∥A2u

′′
∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

. (14)

Applying the classical Cauchy-Schwartz and Young inequalities sequentially to the left
side of (14), we obtain:∥∥∥A2u

′′
∥∥∥2
L2(R+;H)

+
∥∥A4u

∥∥2
L2(R+;H)

≤ ∥P0u∥L2(R+;H)

∥∥A4u
∥∥
L2(R+;H)

≤

≤ ε

2
∥P0u∥

2

L2(R+;H)
+

1

2ε

∥∥A4u
∥∥2
L2(R+;H)

, ε > 0. (15)

Choosing ε = 1
2 in (15), we have:∥∥∥A2u

′′
∥∥∥2
L2(R+;H)

≤ 1

4
∥P0u∥

2

L2(R+;H)
,

therefore, ∥∥∥A2u
′′
∥∥∥
L2(R+;H)

≤ 1

2
∥P0u∥

L2(R+;H)
. (16)

On the other hand, from (15) we obtain∥∥A4u
∥∥2
L2(R+;H)

≤ ∥P0u∥L2(R+;H)

∥∥A4u
∥∥
L2(R+;H)

,

whence ∥∥A4u
∥∥
L2(R+;H)

≤ ∥P0u∥L2(R+;H) . (17)

Let us pass to the estimation of the norm
∥∥A3u′

∥∥
L2(R+;H)

. Taking into account u(t) ∈
W 4

2,T (R+;H), we integrate by parts and apply the Cauchy-Schwartz inequality:∥∥A3u′
∥∥2
L2(R+;H)

=
(
A3u′, A3u′

)
L2(R+;H)

= −
(
A4u,A2u′′

)
L2(R+;H)

≤

≤
∥∥A4u

∥∥
L2(R+;H)

∥∥A2u′′
∥∥
L2(R+;H)

. (18)

Taking into account inequalities (16) and (17) in (18), we have∥∥A3u′
∥∥2
L2(R+;H)

≤ 1

2
∥P0u∥

2

L2(R+;H)
,

therefore, ∥∥A3u′
∥∥
L2(R+;H)

≤ 1√
2
∥P0u∥

L2(R+;H)

.

Finally, let us estimate the norm ∥Au′′′∥L2(R+;H). It was shown in [20] that for any

u (t) ∈W 4
2 (R+;H) the following inequality holds

∥Au′′′∥2L2(R+;H) ≤ 2
∥∥A2u′′

∥∥
L2(R+;H)

∥∥∥u(4)∥∥∥
L2(R+;H)

. (19)
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Again, taking into account the operation of integration by parts for u (t) ∈W 4
2,T (R+;H),

it is easy to see that

∥P0u∥2L2(R+;H) =
∥∥∥u(4)∥∥∥2

L2(R+;H)
+
∥∥A4u

∥∥2
L2(R+;H)

+ 2Re
(
u(4), A4u

)
L2(R+;H)

=

=
∥∥∥u(4)∥∥∥2

L2(R+;H)
+
∥∥A4u

∥∥2
L2(R+;H)

+

+2Re
(
CA3/2u

′′
(0) , A3/2u

′′
(0)

)
+ 2

∥∥∥A2u
′′
∥∥∥2
L2(R+;H)

.

Hence, taking into account the condition Re C ≥ 0, we obtain

∥P0u∥L2(R+;H) ≥
∥∥∥u(4)∥∥∥

L2(R+;H)
. (20)

Then, taking into account (16) and (20) in inequality (19), we have

∥Au′′′∥2L2(R+;H) ≤ ∥P0u∥2L2(R+;H),

therefore,
∥Au′′′∥L2(R+;H) ≤ ∥P0u∥L2(R+;H).

J

3. Solvability of Boundary-Value Problem (1), (2) for
Aj ̸= 0, j = 1, 2, 3, 4

Denote by P1 the operator acting from the spaceW 4
2,T (R+;H) into the space L2 (R+;H)

according to the rule

P1u (t) =
4∑

j=1

Aju
(4−j) (t) , u (t) ∈W 4

2,T (R+;H) .

The following lemma holds.

Lemma 3. Let AjA
−j ∈ L (H, H) , j = 1, 2, 3, 4. Then the operator P1 : W 4

2,T (R+;H)
→ L2 (R+;H) is bounded.

Proof. For any u (t) ∈W 4
2,T (R+;H), there holds

∥P1u∥L2(R+;H) ≤
4∑

j=1

∥∥∥Aju
(4−j)

∥∥∥
L2(R+;H)

≤

≤
4∑

j=1

∥∥AjA
−j

∥∥
H→H

∥∥∥Aju(4−j)
∥∥∥
L2(R+;H)

. (21)
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Then, taking into account the theorem on intermediate derivatives [17, Ch. 1], from (21)
we obtain

∥P1u∥L2(R+;H) ≤ const ∥u∥W 4
2 (R+;H) .

J

The results obtained allow us to find conditions for the existence and uniqueness of
a regular solution to the boundary-value problem (1), (2).

Denote by P the operator acting from the space W 4
2,T (R+;H) into the space

L2 (R+;H) according to the rule

Pu (t) = u(4) (t) +A4u (t) +
4∑

j=1

Aju
(4−j) (t) , u (t) ∈W 4

2,T (R+;H) .

Taking into account Lemmas 1 and 3, we have:

∥Pu∥L2(R+;H) ≤ ∥P0u∥L2(R+;H) + ∥P1u∥L2(R+;H) ≤ const ∥u∥W 4
2 (R+;H) .

Thus, the following theorem holds.

Theorem 4. Let AjA
−j ∈ L (H, H) , j = 1, 2, 3, 4. Then the operator P :

W 4
2,T (R+;H) → L2 (R+;H) is bounded.

The following main theorem holds.

Theorem 5. Let C = A5/2TA−3/2, ReC ≥ 0 and AjA
−j ∈ L (H, H) , j = 1, 2, 3, 4.

Then, if the inequality holds

4∑
j=1

cj
∥∥AjA

−j
∥∥
H→H

< 1,

where the numbers cj , j = 1, 2, 3, 4, are defined in Theorem 3, then the boundary-value
problem (1), (2) for any f(t) ∈ L2 (R+;H) has a unique regular solution.

Proof. We write the boundary-value problem (1), (2) in the form of an operator equation

Pu (t) = P0u (t) + P1u (t) = f (t) ,

where f(t) ∈ L2 (R+;H) , u (t) ∈ W 4
2,T (R+;H) .

It should be stressed that the conditions C = A5/2TA−3/2, Re C ≥ 0 ensure the
existence of a bounded inverse operator P−1

0 acting from the space L2 (R+;H) into the
spaceW 4

2,T (R+;H). After replacing u (t) = P−1
0 v (t), where v (t) ∈ L2 (R+;H), we obtain

the following equation in the space L2 (R+;H):

v (t) + P1P
−1
0 v (t) = f (t) .

In this case, for any v (t) ∈ L2 (R+;H), taking into account inequalities (13), we have:∥∥P1P
−1
0 v

∥∥
L2(R+;H)

= ∥P1u∥L2(R+;H) ≤
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≤
4∑

j=1

∥∥AjA
−j

∥∥
H→H

∥∥∥Aju(4−j)
∥∥∥
L2(R+;H)

≤

≤
4∑

j=1

cj
∥∥AjA

−j
∥∥
H→H

∥P0u∥L2(R+;H) =
4∑

j=1

cj
∥∥AjA

−j
∥∥
H→H

∥v∥L2(R+;H).

Since by the condition of the theorem

4∑
j=1

cj
∥∥AjA

−j
∥∥
H→H

< 1,

then the operator E + P1P
−1
0 has an inverse in the space L2 (R+;H) . Then

u (t)= P−1
0

(
E + P1P

−1
0

)−1
f (t) ,

at that
∥u∥W 4

2 (R+;H) ≤

≤
∥∥P−1

0

∥∥
L2(R+;H)→W 4

2 (R+;H)

∥∥∥(E + P1P
−1
0

)−1
∥∥∥
L2(R+;H)→L2(R+;H)

∥f∥L2(R+;H) ≤

≤ const ∥f∥L2(R+;H).

J

From Theorem 5, we have

Corollary 2. Under the conditions of Theorem 5, the operator P implements an
isomorphism between the spaces W 4

2,T (R+;H) and L2 (R+;H) .

Remark. Note that in Theorem 5 the condition Re C ≥ 0 allows us to omit the
condition − 1√

2
/∈ σ (C) , where C = A5/2TA−3/2.

The case when Re C is not a non-negative operator requires a separate study.
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