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Abstract. Grand Hardy class H+
p), p > 1, is defined and some properties of functions

belonging to this class are studied in this work. Namely, the analogs of the Riesz and
Smirnov theorems as well as the Cauchy’s formula for representation of function are
proved. Necessary and sufficient condition for the validity of Riesz theorem in grand Hardy
spaces H+

p), p > 1, is found. Subspace GH+
p) of the grand Hardy space H+

p) generated by

this condition is defined.
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1. Introduction

In the context of applications to various branches of mathematics, for example, such
as theory of partial differential equations, theory of approximations, harmonic analysis,
etc., there arose great interest in nonclassical function spaces. As examples of such spaces,
we can mention Lebesgue space with variable summability index, Morrey space, grand
Lebesgue space, etc. A lot of articles, reviews and monographs have been dedicated to
these spaces ([1], [9], [10], [13], [14], [18]–[20], [22]-[24], [28]). Along with this, of course,
one has to study approximation matters in suchlike spaces. Approximation matters have
been (and are being) relatively well studied in generalized Lebesgue spaces by [3], [20],
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[24], [25], etc. The situation is different with the case of Morrey-type and grand Lebesgue
spaces, and only recently the approximation matters began to be studied in these spaces.
In this direction, various issues were studied in [2], [4]–[8], [11], [15]–[17], [26], [27].

It is well known that the solution of classical Dirichlet problem for the Laplace
equation on the unit disk ω = {z : |z| < 1} is represented by the following Poisson
integral:

u(r, θ) =
1

2π

∫ 2π

0

f(t)P (r, t− θ)dt,

where P (r, t− θ) is a Poisson kernel for unit circle:

P (r, t− θ) = Re
eiθ + reit

eiθ − reit
=

1− r2

1− 2r cos(t− θ) + r2
, 0 ≤ r < 1, θ ∈ [−π, π].

The desire to weaken the restrictions on the boundary values of the solution leads to the
study of the classes of harmonic functions represented by the Poisson-Stieltjes integral.
A class hp of functions u(r, θ) harmonic in the unit disk ω with

sup
0<r<1

∫ 2π

0

|u(r, θ)|p dθ < +∞

is such a class. Namely, the harmonic function in ω is represented in the form of Poisson-
Stieltjes integral only in the case where u(r, θ) ∈ h1, and in the form of Poisson-Lebesgue
integral with f(t) ∈ Lp(0, 2π), p > 1, only in the case where u(r, θ) ∈ hp. Representation
of harmonic function through Poisson-Stieltjes integral provides the existence of its
limiting values almost everywhere on the unit circle in all non-tangential directions:
f(t) := f(eit) = lim

r→1
u(r, t). Similar classes are defined for the functions analytic in the

unit disk, and similar results are obtained for these functions, too. These classes are R.
Nevanlinna classes N and Hardy classes Hp, p > 0 (for more details see [12], [21]).

In this work, we define the grand Hardy space H+
p), p > 1. We study some of the

properties of functions belonging to the grand Hardy spaces H+
p). We find a necessary and

sufficient condition which provides the validity of the analog of classical Riesz theorem
in grand Hardy space H+

p). We prove the analog of Smirnov theorem, and we obtain

Cauchy’s formula in the space H+
p).

2. Some Auxiliary Concepts and Facts

In this section, we give definitions for grand Lebesgue spaces and classical Hardy classes.
We also state some of their properties and auxiliary facts to be used later. By Lp)(0, 2π),
1 < p < +∞, we denote a grand Lebesgue space of measurable functions f on [0, 2π]
with the norm

∥f∥p) = sup
0<ε<p−1

(
ε

2π

∫ 2π

0

|f(t)|p−ε
dt

) 1
p−ε

< +∞.
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The following inclusions hold:

Lp(0, 2π) ⊂ Lp)(0, 2π) ⊂ Lp−ε(0, 2π), 1 < p < +∞.

Obviously, the space of infinitely differentiable functions C∞[0, 2π] is embedded in
Lp)(0, 2π). The space Lp)(0, 2π) with the norm ∥f∥p) is a non-separable Banach space.

The space C∞
0 [0, 2π] of infinitely differentiable finite functions on [0, 2π] is not dense in

Lp)(0, 2π). The validity of this assertion follows from the statement below:

Statement [15]. The subspace C∞
0 [0, 2π] consists of the functions f ∈ Lp)(0, 2π) which

satisfy the condition

lim
ε→+0

ε

∫ 2π

0

|f(t)|p−ε
dt = 0, (1)

where C∞
0 [0, 2π] is a closure of C∞

0 [0, 2π] in Lp)(0, 2π).
Extending every function f ∈ Lp)(0, 2π) to the whole axis R and assuming f(t) = 0,

t ∈ R\[0, 2π], consider the set G̃p)(0, 2π) of functions f ∈ Lp)(0, 2π) which satisfy the
condition

∥f(·+ δ)− f(·)∥p) → 0, δ → 0.

It is clear that G̃p)(0, 2π) is a linear manifold in Lp)(0, 2π). Let Gp)(0, 2π) be its closure in
Lp)(0, 2π). The set C∞

0 [0, 2π] is dense in Gp)(0, 2π) (see, [26], [27]). Therefore, according
to Statement 1, the space Gp)(0, 2π) consists of functions satisfying (1).

Let’s recall some facts from the theory of Hardy spaces. Let γ be a unit circle γ =
{z ∈ C : |z| = 1}. The Hardy space H+

p , p > 0, is defined as a space of functions f
analytic in ω = intγ which satisfy the condition

sup
0<r<1

∫ 2π

0

∣∣f(reit)∣∣p dt < +∞.

Clearly H+
p ⊂ H+

q for every p and q: 0 < q < p. Every function f ∈ H+
p has some limiting

values almost everywhere on γ in non-tangential directions. Denote this limit function
by f+. From Fatou’s lemma it follows that f+ ∈ Lp(0, 2π). For every function f ∈ H+

1 ,
the following Poisson formula holds:

f(reit) =

∫ 2π

0

f+(eis)P (r, s− t)ds. (2)

To obtain our main results, we will often use the following classical facts.

Theorem 1. (Riesz theorem). If f ∈ H+
p , p > 0, then

lim
r→1

∫ 2π

0

∣∣f(reit)∣∣p dt = ∫ 2π

0

∣∣f+(eit)
∣∣p dt,

lim
r→1

∫ 2π

0

∣∣f(reit)− f+(eit)
∣∣p dt = 0.
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Smirnov theorem below establishes a connection between these classes.

Theorem 2. (Smirnov theorem). If f ∈ H+
p , p > 0, then

1) if
∣∣f+(eit)

∣∣ ≤ M almost everywhere on γ, then |f(z)| ≤ M , z ∈ ω;
2) if f+ ∈ Lq, p < q, then f ∈ H+

q .

Cauchy’s formula is true for the functions belonging to these classes:

Theorem 3. (Riesz theorem).
1) If f ∈ H+

p , 1 < p < +∞, then Cauchy’s formula holds:

f(z) =
1

2πi

∫
γ

f+(ξ)

ξ − z
dξ, z ∈ ω. (3)

2) If f+ ∈ Lp(0, 2π), 1 < p < +∞, then the function f defined by (3) belongs to the
class H+

p .

We will also need the following theorem.

Theorem 4. (Uniqueness theorem). If the function f ∈ H+
p ,p > 0, is such that f+ is

equal to zero on a set of positive measure on γ, then f is identically equal to zero in ω.

More details on these facts can be found in [12], [21].

3. Grand-Hardy Space

Consider the problem of representing harmonic function in ω in terms of Poisson formula
for f ∈ Lp)(0, 2π). Denote by hp), p > 1, a class of harmonic functions u(r, θ) in ω which
satisfy the condition

∥u∥hp)
= sup

0<r<1
∥ur(·)∥p) < +∞,

where ur(t) = u(reit). For ∀ε ∈ (0, p − 1), the embeddings hp ⊂ hp) ⊂ hp−ε, p > 1, are
true.

The following analog of Riesz theorem is true:

Theorem 5. For the harmonic function u(r, θ) in ω o be represented in terms of Poisson
integral with f ∈ Lp)(0, 2π), p > 1, it is necessary and sufficient that u ∈ hp). If so,

∥f(·)∥p) = lim
r→1

∥ur(·)∥p) , u ∈ hp). (4)

Proof. Necessity. Let the representation (2) hold for the harmonic function u(r, θ) in ω
with f ∈ Lp)(0, 2π). It is clear that ∀ε ∈ (0, p−1) we have f ∈ Lp−ε(0, 2π) and, therefore,∫ 2π

0

|ur(t)|p−ε
dt =

∫ 2π

0

∣∣∣∣ 12π
∫ 2π

0

f(s)P (r, s− t)ds

∣∣∣∣p−ε

dt ≤

≤
(

1

2π

)p−ε ∫ 2π

0

(∫ 2π

0

|f(s)|P (r, s− t)
1

p−εP (r, s− t)
p−ε−1
p−ε ds

)p−ε

dt ≤
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≤
(

1

2π

)p−ε ∫ 2π

0

(∫ 2π

0

|f(s)|p−ε
P (r, s− t)ds

(∫ 2π

0

P (r, s− t)ds

)p−ε−1
)
dt =

=
1

2π

∫ 2π

0

∫ 2π

0

|f(s)|p−ε
P (r, s− t)dsdt =

∫ 2π

0

|f(s)|p−ε
ds.

Hence it follows
∥ur(·)∥p) ≤ ∥f(·)∥p) , 0 < r < 1.

Passing to the limit as r → 1, we obtain

lim
r→1

∥ur(·)∥p) ≤ ∥f(·)∥p) . (5)

Sufficiency. Let u ∈ hp). For ∀ε ∈ (0, p − 1) we have u ∈ hp−ε. Then it is clear that
the function u(r, θ) has a representation (2), where f(t) = u+(t) ∈ Lp−ε(0, 2π) are the
limiting values of u(r, θ) as r → 1 in non-tangential directions. Fatou’s lemma implies
the validity of the following relation:∫ 2π

0

∣∣u+(t)
∣∣p−ε

dt ≤ lim
r→1

∫ 2π

0

|ur(t)|p−ε
dt.

We have(
ε

2π

∫ 2π

0

∣∣u+(t)
∣∣p−ε

dt

) 1
p−ε

≤ lim
r→1

(
ε

2π

∫ 2π

0

|ur(t)|p−ε
dt

) 1
p−ε

≤ lim
r→1

∥ur(·)∥p) .

Then we obtain ∥∥u+(·)
∥∥
p)

≤ lim
r→1

∥ur(·)∥p) . (6)

(5) and (6) imply (4). J

Define the grand Hardy space H+
p), p > 1, of functions f analytic in ω which satisfy

the condition
∥f∥H+

p)
= sup

0<r<1
∥fr(·)∥p) < +∞.

The following lemma is true.

Lemma. The following continuous embeddings hold true:

H+
p ⊆ H+

p) ⊆ H+
p−ε, p > 1, 0 < ε < p− 1.

Proof. Consider ∀ε ∈ (0, p − 1). Applying Hölder’s inequality with the index p
p−ε , we

obtain (∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

≤
(∫ 2π

0

|fr(t)|p dt
) 1

p

(2π)
ε

p(p−ε) .

Consequently,(
ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

≤ sup
0<ε<p−1

(
ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

≤
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≤ (2π)−
1
p (p− 1)

(∫ 2π

0

|fr(t)|p dt
) 1

p

,

i.e. ( ε

2π

) 1
p−ε ∥fr(·)∥p−ε ≤ ∥fr(·)∥p) ≤ (2π)−

1
p (p− 1) ∥fr(·)∥p .

We have ( ε

2π

) 1
p−ε ∥f∥H+

p−ε
≤ ∥f∥H+

p)
≤ (2π)

− 1
p (p− 1) ∥f∥H+

p
.

J

The following theorem, as an analog of the first part of Riesz’s Theorem 1, shows that
the norm in the large Hardy class can be defined by the norms of the limit function.

Theorem 6. Every function f ∈ H+
p), p > 1, has boundary values f+(·) almost

everywhere on γ in non-tangential directions, f+ ∈ Lp)(0, 2π) and the relation∥∥f+(·)
∥∥
p)

= lim
r→1

∥fr(·)∥p) (7)

holds.

Proof. Consider ∀ε ∈ (0, p − 1). By Lemma, f ∈ H+
p−ε for ε ∈ (0, p − 1). Therefore,

by Theorem 1, the function f has boundary values f+(·) almost everywhere on γ in
non-tangential directions, f+ ∈ Lp−ε(0, 2π). By Riesz Theorem 1, we have

lim
r→1

∫ 2π

0

|fr(t)|p−ε
dt =

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

and

lim
r→1

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt = 0. (8)

Consequently,(
ε

2π

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

= lim
r→1

(
ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

≤

≤ lim
r→1

sup
0<ε<p−1

(
ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

= lim
r→1

∥fr(·)∥p) .

Hence it follows ∥∥f+(·)
∥∥
p)

≤ lim
r→1

∥fr(·)∥p) . (9)

Let’s prove the converse of this inequality. From the inequality∫ 2π

0

|fr(t)|p−ε
dt ≤

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt, ∀r ∈ (0, 1),

it follows that
∥fr(·)∥p) ≤

∥∥f+(·)
∥∥
p)
.
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Hence, passing to the limit as r → 1, we obtain

lim
r→1

∥fr(·)∥p) ≤
∥∥f+(·)

∥∥
p)
. (10)

(9) and (10) imply (7). J

The second part of Riesz theorem is true with additional condition.

Theorem 7. Let f ∈ H+
p), p > 1. Then the relation

lim
r→1

∥∥fr(·)− f+(·)
∥∥
p)

= 0 (11)

holds only when

lim
ε→+0

ε

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt = 0. (12)

Proof. Let (11) be satisfied. Consider arbitrary numbers η > 0 and 0 < ε < p− 1. Then
there exists r0 ∈ (0, 1) such that for ∀r: r0 < r < 1

∥∥fr(·)− f+(·)
∥∥
p)

<
η

1
p−ε

4π
. (13)

Fix r and denote M(r) = max
[0,2π]

|fr(t)|. Let 0 < ε0 < p − 1 be such that for every ε:

0 < ε < ε0 we have

ε(2M(r))p−ε < η. (14)

Using Minkowski’s inequality, (13) and (14), we obtain(
ε

2π

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

≤
(

ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

+

+

(
ε

2π

∫ 2π

0

∣∣f+(t)− fr(t)
∣∣p−ε

dt

) 1
p−ε

≤

≤ M(r)ε
1

p−ε + (2π)−
1

p−ε

(
ε

2π

∫ 2π

0

∣∣f+(t)− fr(t)
∣∣p−ε

dt

) 1
p−ε

≤

≤ M(r)ε
1

p−ε + (2π)−
1

p−ε

∥∥f+(·)− fr(·)
∥∥
p)

<
η

1
p−ε

2
+

η
1

p−ε

2
= η

1
p−ε .

Consequently, for every ε: 0 < ε < ε0 we have

ε

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt < η,

i.e. (12) holds.
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On the contrary, let’s assume (12) is true. Consider an arbitrary number η > 0. Then
it follows directly from (12) that

lim
ε→+0

(
ε

2π

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

= 0.

Therefore, there exists ε0: 0 < ε0 < p− 1, such that for every 0 < ε < ε0 we have(
ε

2π

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

<
η

4
. (15)

From (8) it follows

lim
r→1

(∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

= 0.

Consequently, there exists r0 ∈ (0; 1) such that for ∀r: r0 < r < 1 we have(∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε0

dt

) 1
p−ε0

<
η

2(p− 1)
. (16)

Thus,

∥∥fr(·)− f+(·)
∥∥
p)

= sup
0<ε<p−1

(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

≤

≤ sup
0<ε≤ε0

(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

+

+ sup
ε0<ε<p−1

(
ε

2π

∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

. (17)

Denote

I1(r, ε0) = sup
0<ε≤ε0

(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

,

I2(r, ε0) = sup
ε0<ε<p−1

(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

.

Let’s first estimate I1(r, ε0). Using Minkowski’s inequality and taking into account the
relation ∫ 2π

0

|fr(t)|p−ε
dt ≤

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt,

we obtain (∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

≤
(∫ 2π

0

|fr(t)|p−ε
dt

) 1
p−ε

+
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+

(∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

≤ 2

(∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

.

Then, by (15), we have

I1(r, ε0) ≤ 2 sup
0<ε≤ε0

(
ε

2π

∫ 2π

0

∣∣f+(t)
∣∣p−ε

dt

) 1
p−ε

≤ η

2
. (18)

Now let’s estimate I2(r, ε0). Applying Hölder’s inequality with p−ε0
p−ε and using (16),

for every ε: ε > ε0 we obtain(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

≤

≤ (p− 1)(2π)−
1

p−ε0

(∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε0

dt

) 1
p−ε0

<
η

2
.

Consequently,

I2(r, ε0) = sup
ε0<ε<p−1

(
ε

2π

∫ 2π

0

∣∣fr(t)− f+(t)
∣∣p−ε

dt

) 1
p−ε

≤ η

2
. (19)

Then, from (17), (18) and (19) it follows for ∀r > r0∥∥fr(·)− f+(·)
∥∥
p)

≤ I1(r, ε0) + I2(r, ε0) ≤
η

2
+

η

2
= η,

i.e. (11) holds. J

Similarly we can prove the following theorem:

Theorem 8. Let u ∈ hp), p > 1. Then the relation

lim
r→1

∥∥ur(·)− u+(·)
∥∥
p)

= 0

holds only when

lim
ε→+0

ε

∫ 2π

0

∣∣u+(t)
∣∣p−ε

dt = 0.

The following analogue of Smirnov’s theorem also holds.

Theorem 9. Let f ∈ H+
p), p > 1, then

1) if
∣∣f+(eit)

∣∣ ≤ M almost everywhere on γ, then |f(z)| ≤ M , z ∈ ω;

2) if f+ ∈ Lq), p < q, then f ∈ H+
q).

Proof. The proof of the theorem follows directly from Theorem 2 and Lemma. J
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In theorem below, Cauchy’s formula for the functions from grand Hardy class is
obtained.

Theorem 10.
1) If f ∈ H+

p), 1 < p < +∞, then the following Cauchy formula holds:

f(z) =
1

2πi

∫
γ

f+(ξ)

ξ − z
dξ, z ∈ ω. (20)

2) If f+ ∈ Lp)(0, 2π), 1 < p < +∞, then the function f , defined by (20), belongs to
the class H+

p).

Proof. Let f ∈ H+
p), p > 1. Then, by Theorem 6, we have f+ ∈ Lp). From Lemma it

follows f+ ∈ Lp−ε. Using Theorem 3, we obtain Cauchy’s formula (20).
On the contrary, let f+ ∈ Lp)(0, 2π). Then f+ ∈ Lp−ε, and, by Theorem 3, we have

Cauchy formula (20). Then the representation

f(reit) =

∫ 2π

0

f+(eis)P (r, s− t)ds

holds. Applying Hölder’s inequality and using the relation
∫ 2π

0
P (r, s − t)ds = 2π, we

obtain ∣∣f(reit)∣∣ ≤ ∫ 2π

0

∣∣f+(eis)
∣∣p−ε

P
1

p−ε (r, s− t)P 1− 1
p−ε (r, s− t)ds ≤

≤
(∫ 2π

0

∣∣f+(eis)
∣∣p−ε

P (r, s− t)ds

) 1
p−ε

(∫ 2π

0

P (r, s− t)ds

)1− 1
p−ε

=

= (2π)
1− 1

p−ε

(∫ 2π

0

∣∣f+(eis)
∣∣p−ε

P (r, s− t)ds

) 1
p−ε

.

Consequently, (∫ 2π

0

∣∣f(reit)∣∣p−ε
dt

) 1
p−ε

≤

≤ (2π)
1− 1

p−ε

(∫ 2π

0

∣∣f+(eit)
∣∣p−ε

dt

) 1
p−ε

≤ 2π

(∫ 2π

0

∣∣f+(eit)
∣∣p−ε

dt

) 1
p−ε

.

It directly follows ∥fr(·)∥p) ≤ 2π ∥f+(·)∥p), and therefore

sup
0<r<1

∥fr(·)∥p) ≤ 2π
∥∥f+(·)

∥∥
p)
.

J
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Denote by L
p)
+ the subspace of Lp), generated by the restrictions of functions from

H+
p), and let J : H+

p) → L
p)
+ be the corresponding restriction operator:

Jf(ξ) = f+(ξ), ξ ∈ γ.

From the uniqueness Theorem 4 and Theorem 10 it follows that the operator J is an

isomorphism. Let G
p)
+ = Gp)

∩
L
p)
+ . It is clear that G

p)
+ is a subspace of the space L

p)
+ .

Let GH+
p) = J−1(G

p)
+ ).

The following theorem is a characterization of the space GH+
p).

Theorem 11. The space f ∈ GH+
p), p > 1, consists of functions f ∈ H+

p) satisfying the

equality (11).

Proof. We have f+ ∈ G
p)
+ . As G+

p) ⊂ C∞
0 [0, 2π], by Statement we have

lim
ε→+0

ε
∫ 2π

0
|f+(t)|p−ε

dt = 0. Therefore from Theorem 7 we obtain (11).

Conversely, if (11) holds for f ∈ H+
p), then, by Theorem 7, the inclusion the inclusion

f+ ∈ Gp) holds. Therefore, the inclusion f ∈ GH+
p) is valid. J

References

1. Adams D.R. Morrey Spaces. Springer, Basel, 2016.
2. Bilalov B.T., Gasymov T.B., Guliyeva A.A. On solvability of Riemann boundary value
problem in Morrey-Hardy classes. Turkish J. Math., 2016, 40 (5), pp. 1085-1101.

3. Bilalov B.T., Guseynov Z.G. Basicity of a system of exponents with a piecewise linear
phase in variable spaces. Mediterr. J. Math., 2012, 9 (3), pp. 487-498.

4. Bilalov B.T., Huseynli A.A., El-Shabrawy S.R. Basis properties of trigonometric
systems in weighted Morrey spaces. Azerb. J. Math., 2019, 9 (2), pp. 200-226.

5. Bilalov B.T., Quliyeva A.A. On basicity of exponential systems in Morrey-type spaces.
Int. J. Math., 2014, 25 (6), Paper No. 1450054, pp. 1-10.

6. Bilalov B.T., Sadigova S.R. On solvability in the small of higher order elliptic equations
in grand-Sobolev spaces. Complex Var. Elliptic Equ., 2021, 66 (12), pp. 2117-2130.

7. Bilalov B.T., Sadigova S.R. Interior Schauder-type estimates for higher-order elliptic
operators in grand-Sobolev spaces. Sahand Commun. Math. Anal., 2021, 18 (2), pp.
129-148.

8. Bilalov B.T., Seyidova F.Sh. Basicity of a system of exponents with a piecewise linear
phase in Morrey-type spaces. Turkish J. Math., 2019, 43 (4), pp. 1850-1866.

9. Castilo R.E., Rafeiro H. An Introductory Course in Lebesgue Spaces. Springer, Basel,
2016.

10. Cruz-Uribe D., Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic
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