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Abstract. We consider the generalized shift operator, associated with the Laplace-

n 5 k )
Bessel differential operator Ag = 8‘12 + 3 xn 2
i=1 i=1

Li 2 The maximal commutators M,
x; Oxq )Y

associated with the generalized shift operator are investigated. At first, we prove that
the maximal commutators is bounded from the modified Morrey space Ly x o, (R ;)

to ZP,A’%W(RZ#) foralll<p<oo,be BMOV(RZHF), (p1,02) € XP}W(RZ#).
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1. Introduction

F. Chiarenza and M. Frasca [5] studied the boundedness of the maximal operator M in
Morrey spaces.

Let b be a locally integrable function on R™ and T" be a Calderon-Zygmund operator.
The commutator is defined for smooth functions f by [b, T|f = bT(f) —T(bf). Coifman,
Rochberg and Weiss [6] stated that [b,T] is a bounded operator on L,(R"),1 < p < oo,
when b is a BMO function. Chanillo [4] proved that commutators with Reisz potentials
characterize the function space BMO.
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In the theory of partial differential equations Morrey spaces L, z(R™) play an
important role. They were introduced by C. Morrey in 1938 [21] and defined as follows:
For0<A<n,1<p<oo, feL,\(R") if fe LLOC(R") and

PN
||f||Lm = ||f||L,,,A(Rn) = meﬂgﬁgwr | fllz, (B < o0

If A =0, then L, ,(R") = L,(R"), if A = n, then L, \(R") = Loo(R™), if A < 0 or
A > n, then L, 5(R™) = O, where O is the set of all functions equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour of the
solutions to elliptic partial differential equations, apriori estimates and other topics in
the theory of partial differential equations.

Also by WL, x(R"™) we denote the weak Morrey space of all functions f € WLlp"c (R™)
for which

_2A
||f||WLm = ||f||WLp,>\(R") = Zeﬂgﬁprwr P Fllw L, (Ber)) < 00,

where WL, (R") denotes the weak L,-space.
The maximal operator, potential and related topics associated with the Laplace-Bessel
differential operator

n 62 k i P
Ap = — —_— >0,...,7% >0
B ; 22 + 2og, oz, 94! Vi

have been investigated by many researchers, see [1]-[3], [8]-[12], [14], [16], [19], [22], [23].

2. Preliminaries

Let 1 <k <n, Ry, ={z=(21,...,2,) €ER": 21 >0,...,2, >0} and E(z,7) =
ek, s le—yl <rhvy=0OnH),1n >0.,7% >0, Y =n+...+%,
(2')7 = a'---a]*. For a measurable set £ C R}, suppose |E|, = [p(z')7dz, then
|E(0,7)]y = w(n, k,7)r?, Q@ =n+ |y|, where

nk k
w(n, k,v) = / (2')Vdx = ﬂ-2; r-t <Q;2> H r (%;_1> .
i=1

E(0,1)

Ly~ = Ly(RE ) is the space of all classes of measurable functions f with finite
norm

P

1, = | [ H@reydr| | 1<p<o
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and WLp,y(RZ +), the weak L, - space defined as the set of all measurable functions f
on Ry , with the following finite norm

1
HfHWLMZSIi[Sere T \f(x)|>r}|7/p, 1<p<oo.
: ks

For p = oo the space LOOW(Rg ) is defined by means of the usual modification

1l Eae = 1 fllLe = ess sup|f(z)].
zeRY

Let Ly w~ (R} ;) be the space of measurable functions on R} | with finite norm
1/p

2y = NNy = / [f(@)|Pw(@)(@’)dz |, 1<p<oo
kot

and for p = oo the space Leow (R} ;) = Lo (R} 1)

Definition 1. The weight function @ belongs to the class AP,V(RZ#) for1 <p<oo,if

1
P I

1 / o 1 I
FoTpm— ¢ (y) (') dy =T / e P (WY )dy | < oo
rs0 | [E(z,7)ly |E(z,7)]y

E(z.r) B(z,r)

sup
fceRgH_,
Definition 2. The weight function (1, p2) belongs to the class gp,w(RZ,+) forl<p<
o0, if

p 1A% 1 —p’ Ny ’
[ dwora| o [ et were]| <

E(z,r) E(z,r)

3=

1
sup _
zER} |, 7>0 |E(z,7)]y

The generalized shift operator TV is defined by (see, for example [16], [18])

T9(0) = Co [ oo [ (@) =) d(B),
0 0

sin" B dBy...dBk, © = (x1,...,x) € R*, 2" =

=

where dv(8) =

2

Il
-

(Tht1,- s @n) € RF (z4,y5)5, = (27 — 22;y; cos B; + yf)i 1 <i<k (@) =

((x1?y1)517"'7(xk7’yk Bk) and
Yi+1\ _ 27l (]l
= — +1 2.k .
< 5 ) - 5 T w(2,k,7)

Cyp=m"

ol
3
iy
w‘z
N——
-
™~
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It is well known that TV is closely related to the Laplace-Bessel differential operator

k n 5 5 )

Ap,, = > Bi+ > %, where B; = % + %82_, i = 1,..., k. Furthermore, TY
i=1 i=k+1 ¢ i Lo

generates the corresponding B -convolution

(f © 9)(x) = / f(y) TVg() (') dy.

Ryt

Lemma 1. Let1 <p <oo, p € Ap(R} ), g € Lpp~(Ry ;). For all x € R} | the
following equality is valid.

[ Tlaterew )y =

RY 4+
p J— —
= / ’g (q/zf—I—z%,...,\/zg—l—zi,z”) o(z,2")dv(z, 7).

R” % (0,00)k

Lemma 2. Letge Lll"fy(]Rer) For all x € R, | the following equality

/T%(m)@’)vdy - / g<\/z’f’+z?,...7\/zi+Zi7z”>dv(z,z’),

E(0,r) E((z,0),r)
holds, where E((z,0),r) = {(z,2') € R" x (0,00)% : |(z —2,2')| < r}.
The proof of Lemmas 1 and 2 is done straightforwardly via the following substitutions

2=y 2 =yicosay, Z=y;sina;, 0<a;<m i=1,...,k,
yeRY , 2/ =(Z1,.., %), (2,7') ER" X (0,00)%, 1 <k <n.

Definition 3. Let 1 < p < 00, 0 < A < @Q and [t]; = min{l,t}. We denote by

Lpx~(RE ) the modified B-Morrey space and Ly xo~(RE ) the modified weighted B-
Morrey space, associated to the Laplace-Bessel differential operator as the set of locally
integrable functions f(z), x € Ry |, with finite norm

Ifllz, , = sup ([t]IA/EtTylf(x)lp(y’)”dy)l/p,

PAY 150, 2€RY
\ 1/p
— ’
15,0, = (100 [ Pls@remyan)
A e, t>0,a:€RZHr E;
Note that
WLP;’Y( Z,+) = WLP70,7<RZ,+)’

Lp,A77(RZ,+) C WLP«,/\,W( Z7+) and ||va[/Zp,A,7 < ||fHEp,A,V .
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The sharp maximal function M}i is defined by

Mif(a) = sup BO.0" [ IT7() = fron@I)
E(0,t)

where fgo.(z) = [E0,t)[51 [ TYf(z)(y')dy.
E(0,1)

B — BMO space, BMO, (RZ ), defined as the space of locally integrable functions
f with finite norm

Iflleao, = sup  |E(0,8)[5* / T f(x) = fE.n(@)|(y) dy
t>0, IER27+ Bo)

or

IfllBao, =inf — sup [E(0,)[5 / T f(x) — Cl(y')"dy.
t>0, z€RY

E(0,t)
The following theorem holds.
Theorem 1. [15] 1) Let f € Lll‘ﬁ(RZ7+). If
1/p
ot B0 [ @) son@ra | = flsuo,. <.

E(0,t)
then for any 1 < p < oo

| fllBao, < fllsmo, ., < Apllfllsmo,,

where the constant A, depends only on p.
2) Let f € BMOy(R} ). Then, there is a constant C > 0 such that

t
|fE©0.r) — fEO0] < CllfllBMO, In - 0<2r <t

where C' is independent of f,x,r and t.

Lemma 3. Let 1 <p < o0, p € Ap (R} ,), b€ BMO, (R} ). Then

HT‘b(x) = bgo.n HLPWY,Y(E(O,T))

bl Baro, = sup
SeRY >0 ez, .z
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Proof. From Holder’s inequality, we get

|7°b(x) — beo,n HLP’%,Y(E(O,T))

lbllBrro, S sup
xT

ER} L, r>0 ||90||L,,,7(E(0,r))
Now we obtain that
HT‘b(x) —be@r HL EQO,r
Sup Pv‘P,’Y( ( ) )) 5 Hb”BMO,Y
TER™, >0 H<P|\LM(E(0,7«))

We can assume without loss of generality that ||b]|gaso, = 1; otherwise, we replace b by
b/[|b||Baro., it follows that

/ <|T'b(:z:) —beonley) >p dy =
B(0,r) 16l Baro,

= / (ITb(z) — bpemle(y)’ dy S 1.
E(0,r)

Now we define the B-maximal operator by

M, f(2) = sup B0, / TV f1)(x) (V" dy.
E(0,r)

The following theorem is about the boundedness of the B-maximal operator in
Lp.w~(Ry ;) spaces which was proved in [7].

Theorem 2. 1. If f € Ll,w,y(RZ’+); w € Al,W(RZ,Jr), then M, f € WLl,wﬁ(RZ#) and

My fllwes ey < CUlf Iy,

where C1 depends only on w,v and n.

2.If f e Lp_,w,,y(]RZ#), w € APKY(RZ,-Q—)’ 1<p<oo, then M,f € Lp,w,'y(R;;-s-) and

My fllzy s < Collfllzy.q

where Cy depends only on p,w,~y and n.
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3. Main Results

Also, in the works [17], [20] it was proved:

Proposition. Let1 < p < oo, (p,p1) € gp(Y), Then M, is bounded from f € Ly o, (Y)
to f € Lp,,(Y), where (Y,d,v) homogeneous type space.

Theorem 3. Let 1 <p <00, 0 <A < Q and (¢1,¢2) € EP,W(RZ&). Then M., is bounded

from Lp,A,cplﬁ(RZ,+) to Lp X0,

Proof. We need to introduce the maximal operator defined on a space of homogeneous
type (Y, d,v). By this we mean a topological space Y = R" x (0,00)* equipped with a
continuous pseudometric d and a positive measure v satisfying

v(E((x,2),2r)) < Crv(E((x,27),7)) (1)

with a constant C) independent of (xz,2’) and r > 0. Here E((z,2'),r) = {(y,¥') €
Yoo d((w,2), (y,)) < b dv(y,y) = () Hdy dy’s (y)7 = = (o)t ()
d((z,2"), (y,y") = (z,2) = (g, ¥)| = (Jo —y* + (2 = y/)*) .

Let (Y, d,v) be a space of homogeneous type. Define

M, F (2, 7) = sup (B ((, 7),r) ! /  Fwy)|du),
>0 E((z,z"),r)

where f(z,2') = f (\/x% + T,/ 22 —&—x%,x”)

It is well known that the fractional maximal operator M, is bounded on L, 4, (Y, dv)
to Ly, (Y,dv) for 1 <p < oo, (¥1,92) € Ay(Y) (see [15]). Here we are concerned with
the fractional maximal operator defined by dv(y,vy’) = (v')?"tdy dy’. It is clear that this
measure satisfies the doubling condition (1).

It can be proved that

M, f <\/z%+z§,...,\/zg+z§,z"> =M,f <\/z% +725,...,1/72 +zi,z”,0) (2)

and

M, f(z) = M, f(z,0). 3)

Indeed, Lemma 1 and ¢1(y) = ©1(y)(MyX E((2,0),r) (y))?, N
Pa(y) = <p2(y)(MVXE((I’O),T)(y))9, for any 0 < 0 < 1, (¢1,%¢2) € A,(Y), we have

[ P@P o) (e, ) ) =

P
01U ) My X B(0),m) (¥ ¥)? dv(y, v)

=),
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and

|Erly :VE((\/z%—l—zi...,\/zi—i—zi,z”,O) ,T‘)

imply (2). Furthermore, taking Z; = 0 in (2) we get (3).
Using Lemma 1 and equality (2) we have

/E Tv (M’Yf(-r))p (,DQ(y)(y’)’Y dy <
< /n TY (va(l‘))p @2(y)(M'yXET (y))9<y/)’y dy =

p
:/l% 000y (M'yf (\/Z%—FZ%’?\/Z%‘FZ%,Z”)) %
7% (0,00)k

X pa(2, 2") (MyX (2.0 (2, 7)) dv(z,2]) =

P
( (,/z§+z§7...,\/zg+z§,z“,o>) X

X502( )(MVXE((LO),T)(Zvy))O dl/(za?)
By the Proposition we have

(/E TV (M, f(@))" m(y)(y'wdy) b

<([ (w7 (m,---,\/yiw%,y”m))p

X024, ) (MyXB((2.0).0) (4, V)’ dy(y,?)) _
_ (/y <Muf <\/m \/m > D) du(y,y/)>‘1° )
_C2</’/‘f(\/m’ ' m,y” 0)

S =

S =

X1 (Y, ¥ ) (MyX E((2,0).) (Y, Y)

wi)" =
:CQ(/Y’f(m,.. PRy )
v )

1_
P

X1 (Y, ¥ ) (MyX E((2,0),r) (Y, ¥)
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=0y (/Rn /] ]p(fﬂ)sol(y)(MvXET(y))O(y’)Wdy> <
< ([ TUIP@am ) e
3 Lo, T rE@a0hs, W) ) dy)” <

< ([ U@

r

e} T,Qe -
+3 /E L TP @a ) e ) ay)" <

Jj=

=

1
P

o
1 . 2
_ A J+1,.0A P _
<Ol | PR+ | <G DI,
j:
Then
_A .
||M’nyZp,/\,v>2,’Y - mERz}i}?t>Ot ' ”T (M’Yf(x))”L’J’“f’?"Y(Et) S C4||f||ZP,)\,‘Plv’Y'

If A =0, then we get the following result from Theorem 3:

Corollary. Let 1 < p < oo and (¢1,¢2) € ZPW(RZ,Jr)? then the operator M., is bounded

from Lp,@l,'y(RZ,-s-) to prtpa-,w(RZ,-k)'
The commutator generated by the B-mazximal operator M., for a given measurable

function b is formally defined by
[M% blf = M’y(bf) - bM'y(f)

and for a given measurable function b, the B-mazimal commutator is defined by

Mo (&)= swp B0 [ T¥106) ~ b Sy
E(0,r)

for allz € Ry .

Lemma 4. [13] Let 1 < s < oo and b € BMO(R}, ). Then there exists C > 0 such
that for all x € Ry,

M, (My. f)(@) < Clbllsaso, ((My (M, £))* (@) + M (M |19) ()
holds.

Theorem 4. Let b € BMO,(Ry ), 1 < p < oo and (¢1,¢2) € /Tpﬁ(R};_s_), Y1 €
Ap,v(RZ,-s-)- Then My, is bounded from Lp,%ﬁ(RE#) to Lp gy -
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Proof. By using Lemma 4 and Corollary, we have M  is bounded from L, ,, . (RZ 4)
t0 Lip sy <

Operators My, and [M,,b] are essentially different from each other. For example,
M, ., is a positive and sublinear operator, but [M,,b] is neither positive nor sublinear.
However, if b satisfies some additional conditions, then the operator M,  is controlled
by [M’Ya b]

Theorem 5. Let 1 <p <00, 0 <A< Q, b€ BMO,(R} ) and (1, p2) € EP’V(RZ#),
1 € Ap(RE ). Then the commutator M - is bounded from EZD’)\»WL’Y(RZ,—i—) to Z,,,Wm.

Proof. Sufficiency: Let 1 <p<o00,0<A<Q, f € Ep,,\)%ﬁ(RZ#). We have

/ TV (M 117 ()2 (o) dy <
E(0,6)

< / TV My £ (2)02(0) (M X500y (4))° () dy, = € RE .

R} ,
Taking into account the properties of EPW(RZ, 4) we can easily see that

1(1) (MyX B((2,0.0) )%, 02(4) (MyXE((2,0).0(¥))?, for any 0 < 6 < 1. Then by using
Theorem 4 we obtain

TY [My o f17 (x)p2(y) (y') dy <

E(0,1)
<C Wi, [ TIA P )L X0 60y <
R?)+
<C W0, [ TP @)y +
E(0,r)
o, > [ TP )Mo )6 dy <

I=1g(0,2i 1)\ E(0,277)

<C Wllguo, [ TN P@I )
E(0,r)
p - Yy p TQ@ Y
Clbllo, > [ TIA @R ) <
I=1g(0,2i+10)\ E(0,297)

> 1 ,
p P A J+1,0A
< C b0, ||f||szW177 [rl7 + j§=1: (2 + 1)@ (2773

IN

<C W Iblaso, 11
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