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Abstract. The present paper studies the boundary-value problem in a finite segment
generating with the discontinuous Sturm-Liouville equation and periodic(antiperiodic)
boundary conditions. We prove completeness of the system of eigenfunctions and
generalized eigenfunctions in the space L2(0, π; ρ), obtain the asymptotic formulas for
the solution and prove the asymptotic formulas for the eigenvalues of the periodic and
antiperiodic boundary value problems.
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1. Introduction

We consider two boundary value problems generated by the Sturm-Liouville equation

−y′′ + q(x)y = λ2ρ(x)y, 0 ≤ x ≤ π, (1)

subject to the boundary conditions

y(0) = ±y(π), y′(0) = ±y′(π), (2)
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4 Periodic and antiperiodic boundary value problems for the Sturm-Liouville equation

where q(x) is a complex valued function in L2 (0, π) , λ is a spectral parameter,

ρ(x) =

{
1 , 0 ≤ x ≤ a,
α2 , a < x < π,

with a ∈ (0, π) , α > 0, α ̸= 1. Note that the boundary conditions (2) is called periodic
for the plus sign and antiperiodic for the minus sign.

Boundary value problems for the Sturm-Liouville equation with discontinuous leading
coefficients arise in geophysics, electromagnetics, elasticity and other fields of engineering
and physics; for example, modelling toroidal vibrations and free vibrations of the earth,
reconstructing the discontinuous material properties of a nonabsorbing media, as a rule
leads to direct and inverse problems for the Sturm-Liouville equation with discontinuous
coefficients (see [4], [9], [19]).

Sturm-Liouville operators with periodic and antiperiodic boundary conditions were
investigated by Stankevich [16], Sadovnichii [14], Marchenko and Ostrovskiy [10], [11].
The inverse problems for the Sturm-Liouville operators with nonseparated boundary
conditions were investigated by Sadovnichii [13], Plaksina [17], [18], Yurko [20] and other
authors. For an instance, in the studies of Gasymov et. al., [5], Guseinov and Nabiev
[6]–[8], the spectral properties were investigated, the uniqueness theorems were proved,
necessary and sufficient conditions were obtained for the solution of the inverse problem
for the Sturm-Liouville operators with nonseparated boundary conditions . In the studies
of Sadovnichii et. al., [15] and Akhtyamov [1] the the uniqueness of the inverse problem
were investigated for the general operators by different approach. A direct and inverse
scattering problem for the one-dimensional perturbed Hill operator was investigated in
[2], [3].

In the present paper investigating the boundary-value problem (1)− (2) , in Section
2 we prove completeness of the system of eigenfunctions and generalized eigenfunctions
in the space L2(0, π; ρ). In Section 3 we obtain the asymptotic formulas for the solution
of Eq. (1) and in the Section 4 we prove the asymptotic formulas for the eigenvalues of
the periodic and antiperiodic boundary value problems for the Eq. (1) .

2. Completeness of the System of Eigenfunctions of
the Boundary Value Problem

Consider the boundary value problem (1)− (2) . The values of the parameter µ = λ2 for
which the boundary value problem has a non-trivial solution, are called eigenvalues and
corresponding solutions are called eigenfunctions.

Let s (x, λ) and c(x, λ) be linearly-independent solutions of Eq. (1) with initial
conditions

s (0, λ) = c′ (0, λ) = 0, s′ (0, λ) = c (0, λ) = 1.

Then any solution y(x, λ) of Eq. (1) can be represented as a linear combination of
solutions s (x, λ) and c(x, λ) :

y(x, λ) = Ac(x, λ) +Bs(x, λ).
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Boundary conditions (2) give the following relations:

A (c(π, λ)∓ 1) +Bs(π, λ) = 0,

Ac′(π, λ) +B (s′(π, λ)∓ 1) = 0.

Hence eigenvalues of the boundary value problem (1)− (2) coincide with squares of the
roots of the characteristic function

∆± (λ) =

∣∣∣∣ c(π, λ)∓ 1 s(π, λ)
c′(π, λ) s′(π, λ)∓ 1

∣∣∣∣ .
Since the Wronskian W (c, s) = c(x, λ)s′(x, λ)− c′(x, λ)s(x, λ) = 1 we have

∆± (λ) = 2∓ c(π, λ)∓ s′(π, λ).

Now consider the solutions w±
1 (x, λ) and w±

2 (x, λ) defined as

w±
1 (x, λ) = ∓s(π, λ)c (x, λ)− (1∓ c(π, λ)) s(x, λ), (3)

w±
2 (x, λ) = (1∓ s′(π, λ)) c(x, λ)± c′(π, λ)s(x, λ). (4)

It is easy to compute that

w±
1 (0, λ) = ±w±

1 (π, λ) , w±′
1 (0, λ)∓ w±′

1 (π, λ) = −∆± (λ)

and
w±

2 (0, λ)∓ w±
2 (π, λ) = ∆± (λ) , w±′

2 (0, λ) = ±w±′
2 (π, λ) .

An eigenvalue µ±
n of the boundary value problem (1) − (2) is called an eigenvalue with

multiplicity p if µ±
n is a root of multiplicity p of the function ∆±

(√
µ
)
. It is easy to see

that the functions

w±
i,k (x) =

(−1)
k

k!

∂k

∂µk
w±

i (x, λ)
(
µ = λ2

)
, k = 0, p− 1, i = 1, 2, ...,

satisfy the boundary conditions (2) for λ2 = µn. Clearly w
±
i,0 (x) , ..., w

±
i,p−1 (x) (i ≥ 1, 2)

form a chain in which the first nonzero element w±
i,ℓi

(x) is an eigenfunction, and the
elements following this eigenfunction are the corresponding generalized eigenfunctions.
Differentiating the equation (1) k times with respect to µ = λ2, we see that
the eigenfunction and generalized eigenfunctions of the chain w±

i,0 (x) , ..., w
±
i,p−1 (x) ,

(i ≥ 1, 2) satisfy the equation

−w
′′±
i,k (x) + q(x)w±

i,k (x) = ρ(x)
(
µnw

±
i,k (x)− w±

i,k−1 (x)
)

and boundary conditions (2). It is important to note that two chains
w±

1,0 (x) , ..., w
±
1,p−1 (x) and w±

2,0 (x) , ..., w
±
2,p−1 (x) can consist of the same functions.

Beside it we mention that together with eigenvalues and generalized eigenvalues each
chain may contain only zero functions.

Let us consider the question of completeness in L2(0, π; ρ) of the system of
eigenfunction and generalized eigenfunctions of the boundary value problem (1) − (2).
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As it is known a system of vectors is complete in a Hilbert space if and only if the only
vector orthogonal to all elements of this system is the null element. Let M± is the set of
all eigenvalues µ±

n , i.e the spectrum of the boundary value problem (1)− (2) and denote
the multiplicity of µ±

n by p±n . As we have mentioned above, the functions

(−1)
k

k!

∂k

∂µk
w±

1 (x,
√
µ) |µ=µ±

n

(
0 ≤ k ≤ p±n − 1, µ±

n ∈M±, i = 1, 2
)

either are identically zero, or are the eigenfunction and generalized eigenfunctions of the
problem (1)− (2). Let us show that if f(x) ∈ L2(0, π) and

π∫
0

ρ(x)
∂k

∂µk
w±

1 (
√
µ, x) f(x)dx|µ=µ±

n
= 0 (5)

for all µ±
n ∈ M±, k = 0, 1, ..., p±n − 1, i = 1, 2, then f(x) = 0 a.e. It is clear that the

characteristic function ∆±
(√
µ
)
and the function

w±
i (f,

√
µ) =

x∫
0

ρ(x)w±
i (x,

√
µ) f(x)dx (i = 1, 2)

are entire functions of µ. From the formula (5) we have that each p±n fold root µ±
n of the

function ∆±
(√
µ
)
is also a root of functions w±

i (f,
√
µ) (i = 1, 2) with multiplicity at

least p±n . Therefore, the equality (5) holds if and only if w±
i (f, λ) [∆± (λ)]

−1
(i = 1, 2)

are entire functions of λ. Consequently, for proving the completeness of the system of the
system of eigenfunctions and generalized eigenfunctions of the boundary value problem
(1) − (2) it is enough to prove that f(x) = 0 a.e. if and only if w±

i (f, λ) [∆± (λ)]
−1

(i = 1, 2) are an entire functions of the parameter λ.
Note that for q(x) ≡ 0 the characteristic function ∆±

0 (λ) of the boundary value
problem (1)− (2) has the form

∆±
0 (λ) = 2∓ s′0(π, λ)∓ c0(π, λ),

where

c0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
cosλµ+(x) +

1

2

(
1− 1√

ρ(x)

)
cosλµ−(x),

s0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
sinλµ+(x)

λ
+

1

2

(
1− 1√

ρ(x)

)
sinλµ−(x)

λ
,

µ±(x) = ±x
√
ρ(x) + a

(
1∓

√
ρ(x)

)
.

Since

s′0(x, λ) =
1

2

(√
ρ(x) + 1

)
cosλµ+(x)− 1

2

(√
ρ(x)− 1

)
cosλµ−(x)
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we have

c0(π, λ) =
1

2

(
1 +

1

α

)
cosλµ+(π) +

1

2

(
1− 1

α

)
cosλµ−(π),

s′0(π, λ) =
α

2

(
1 +

1

α

)
cosλµ+(π)− α

2

(
1− 1

α

)
cosλµ−(π)

which implies

∆±
0 (λ) = 2∓ (α+ 1)

2

2α
cosλµ+(π)± (1− α)

2

2α
cosλµ−(π).

Now let us prove that the system of eigenfunctions and generalized eigenfunctions of the
boundary value problem (1)− (2) is complete in L2(0, π; ρ).

Let φ(x, λ) and ψ(x, λ) are solutions of Eq. (1) with conditions

φ′(π, λ) = ψ(π, λ) = 0.

The following lemma is obtained from the integral representations of the solutions
c(x, λ), s(x, λ) and φ(x, λ), ψ(x, λ) in [12] and the similar fact in [10] (see Lemma 1.3.1).

Lemma 1. For all f(x) ∈ L1(0, π) the following equalities are held.

lim
|λ|→∞

e−|Imλµ+(π)|
π∫

0

f(x)c(x, λ)dx = lim
|λ|→∞

e−|Imλµ+(π)|
π∫

0

f(x)φ(x, λ)dx = 0,

lim
|λ|→∞

e−|Imλµ+(π)|
π∫

0

λf(x)s(x, λ)dx = lim
|λ|→∞

e−|Imλµ+(π)|
π∫

0

λf(x)ψ(x, λ)dx = 0.

Corollary 1. For all f(x) ∈ L1(0, π) the equality

lim
|λ|→∞

e−|Imλµ+(π)|w±
i ( f, λ) = 0, i = 1, 2,

holds.

Proof. From formulas (3) and (4) it is obtained that

w±
1 (x, λ) = ∓ (s(π, λ)c(x, λ)− c(π, λ)s(x, λ))− s(x, λ)

= ∓ψ(x, λ)− s(x, λ),

w±
2 (x, λ) = ± (c′(π, λ)s(x, λ)∓ s′(π, λ)c(x, λ)) + c(x, λ)

= ±φ(x, λ) + c(x, λ).

Hence, the assertion is obtained from the Lemma 1. J

Lemma 2. There exists a constant number C > 0 and a sequence of unboundely
expanding contours Kn on which

|∆±(λ)| ≥ |λ|−1
Ce|Imλµ+(π)|. (6)
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Proof. Using representations

s(x, λ) = s0(x, λ) +

µ+(x)∫
0

N−(x, t)
sinλt

λ
dt,

c(x, λ) = c0(x, λ) +

µ+(x)∫
0

N+(x, t) cosλtdt

(see [12]), where the kernel N±(x, t) and it is first order partial derivatives belong to
L1(0, µ

+(x)) for ∀x ∈ [0, π] we have

c(π, λ) = c0(π, λ) +N+(π, t)
sinλt

λ
|µ

−(π)+0
t=µ−(π)−0

+N+(π, µ
+(π))

sinλµ+(π)

λ
−

µ+(π)∫
0

DtN+(π, t)
sinλt

λ
dt,

c′(π, λ) = c′0(π, λ)− αN+(π, t) cosλt|t=µ−(π)+0
t=µ−(π)−0

+αN+(π, µ
+(π)) cosλµ+(π) +

µ+(π)∫
0

DxN+(π, t) cosλtdt,

s(π, λ) = s0(π, λ) +

µ+(π)∫
0

N−(π, t)
sinλt

λ
dt, (7)

s′(π, λ) = s′0(π, λ)− αN−(π, t)
sinλt

λ
|t=µ−(π)+0
t=µ−(π)−0

+αN−(π, µ
+(π))

sinλµ+(π)

λ
+

µ+(π)∫
0

DxN−(π, t)
sinλt

λ
dt. (8)

Consequently,

∆±(λ) = 2∓ c(π, λ)∓ s′(π, λ)

= 2∓ c0(π, λ)∓ s′0(π, λ) + λ−1e|Imλµ+(π)|ε(λ),

where lim|λ|→∞ ε(λ) = 0. Using the corresponding expressions for c0(π, λ) and s′0(π, λ)
we obtain

∆±(λ) = 2∓ [1 +A] cosλµ+(π)∓ [1−A] cosλµ−(π) + λ−1e|Imλµ+(π)|ε(λ), (9)

where A = 1
2

(
α+ 1

α

)
. The function

∆
(0)
± (λ) = 2∓ [1 +A] cosλµ+(π)∓ [1−A] cosλµ−(π)
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will be called the main part of the characteristic function ∆±(λ) and it defines the
behavior of ∆±(λ) as |λ| → ∞.

Since ∆
(0)
± (λ) is an entire function it has a countable set of zeros

{
λ0n
}
, where

λ0n = ± nπ

µ+(π)
+ θ±n

and the sequence {θ±n } is bounded. Let Zr (where r > 0 is arbitrary small number) is
the domain which is obtained by removing balls of radius r centred at the zeros of the

function ∆
(0)
± (λ), i.e. at points λ0n (n = 0,±1,±2, ...) . Since the even function ∆

(0)
± (λ) is

a quasipolinomial, i.e.

∆
(0)
± (λ) = 2∓ 1

2
(1+A)eiλµ

+(π)∓ 1

2
(1+A)e−iλµ+(π)∓ 1

2
(1−A)eiλµ

−(π)∓ 1

2
(1+A)e−iλµ−(π),

then the function [
∆

(0)
± (λ)

]−1

e−iλµ+(π)

is holomorphic in the domain Zr ∩ {Imλ > 0} , tends to ∓ 2
1+A when Imλ→ +∞ and it

is continuous on the boundary of this domain. Then by the maximum modulus principle,
the supremum of the modulus is finite. Consequently there is Cr > 0 such that∣∣∣∆(0)

± (λ)
∣∣∣ > Cre

|Imλµ+(π)|, λ ∈ Zr.

Hence, any sequence Kn of expanding contours contained in the domain Zr can be taken
as contours on which the inequality (6) satisfies. Lemma is proved. J

We now turn to the proof of the main results of this section.

Theorem 1. The system of eigenfunctions and generalized eigenfunctions of the
boundary value problem (1)− (2) is complete in the space L2(0, π; ρ).

Proof. We will show that the functions w±
i (f, λ) [∆±(λ)]

−1
(i = 1, 2) are entire functions

if and only if f(x) = 0 a.e. Suppose f(x) ∈ L2(0, π) and the functions w±
i (f, λ) [∆±(λ)]

−1

are entire. By Lemma 2, there exists a constant C > 0 and a sequence of unboundely
expanding contours Kn such that∣∣∣w±

i (f, λ) [∆±(λ)]
−1
∣∣∣ ≤ C|λ||w±

i (f, λ)|e
−|Imλµ+(π)|

satisfies on Kn.
From this inequality and the Corollary 1 it follows that

lim
n→∞

max
λ∈Kn

∣∣∣w±
i (f, λ) [∆±(λ)]

−1
∣∣∣ = 0 (i = 1, 2).

Therefore when |λ| → ∞, the entire functions w±
i (f, λ) [∆±(λ)]

−1
grow slower than

|λ|, and as a result they are identically equal to constants which we denote by f±i .
Consequently, w±

i (f, λ) = f±i ∆±(λ) which implies (together with (3), (4))

∓s(π, λ)c(f, λ)− (1∓ c(π, λ))s(f, λ) = f±1 ∆±(λ),
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(1∓ s′(π, λ)c(f, λ)± c′(π, λ)s(f, λ) = f±2 ∆±(λ),

where c(f, λ) =
π∫
0

ρ(x)f(x)c(x, λ)dx, s(f, λ) =
π∫
0

ρ(x)f(x)s(x, λ)dx.

Hence

s(f, λ) = ±s(π, λ)f±2 ± s′(π, λ)f±1 − f±1 . (10)

Consider the identity (10) for real values λ→ ±∞.Using Lemma 1 and formulas (7) , (8)
we can express the identity (10) as

λ−1δ(λ) = −f±1 ± f±2 λ
−1
(
α+ sinλµ+(π) + α− sinλµ−(π) + ε1(λ)

)
±f±1

(
α+ 1

2
cosλµ+(π) +

1− α

2
cosλµ−(π) + ε2(λ)

)
,

where the functions δ(λ), ε1(λ) and ε2(λ) tend to zero as λ → ±∞ which is possible if
and only if f±1 = 0, f±2 = 0. Consequently, s(f, λ) ≡ 0, i.e.

π∫
0

ρ(x)f(x)

s0(x, λ) +
µ+(x)∫
0

N−(x, t)
sinλt

λ
dt

 = 0.

We immediately have

µ+(π)∫
a

sinλt

λ

Mf(t) +

∫
a+ t−a√

ρ(t)

N−(x, t)f(x)dx

 = 0,

where the operator M is defined as

Mf(t) =

 f(t) , 0 ≤ t ≤ µ−(π),
f(t) + α−f(a+ a−t

α ) , µ−(π) < t ≤ a,
α+f(a+ t−a

α ) , a < t < µ+(π).

Hence, the Fourier sin-transform of the function

Mf(t) +

π∫
a+ t−a√

ρ(t)

N−(x, t)f(x)dx
(
0 ≤ t ≤ µ+(π)

)

vanishes identically, and therefore by the uniqueness theorem for Fourier transform

Mf(t) +

π∫
a+ t−a√

ρ(t)

N−(x, t)f(x)dx = 0 (11)

a.e. on the segment [0, µ+(π)] .
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It is easy to show that the operator M is a linear and bounded on the space
L2(0, µ

+(π)). Moreover it has the inverse operator

M−1f(t) =


f(t) , 0 ≤ t < µ−(π),

f(t)− α−

α+ f(2a− t) , µ−(π) < t ≤ a,
1
α+ f(µ

+(t)) , a < t < π,

which is also bounded on the space L2(0, π; ρ). Then the homogenous equation (11) with
the kernel N−(x, .) ∈ L2(0, µ

+(π)) has only the trivial solution. We conclude that f(x) =
0 for a.e. x ∈ [0, π] as asserted. J

3. Asymptotic Formulas for the Solution of the
Sturm-Liouville Equation

We consider the Sturm-Liouville equation (1) where

ρ(x) =

{
1, 0 ≤ x ≤ a,
α2, x > a,

λ is a complex parameter, q(x) ∈ Wn
2 [0, π]. Here Wn

2 [0, π] is the Sobolev’s space of
the complex valued functions that have the square summable absolutely continuous
derivatives of (n− 1) order and the derivative of n order on the segment [0, π].

We need the following lemma(see Lemma 1.4.1 in [10]).

Lemma 3. The equation

−z′′ + q(x)z = α2λ2z, a ≤ x ≤ π, (12)

has the solution

z(x, λ) = eiαλ(x−a)

[
n∑

k=0

(2iαλ)
−k
uk(x) + (2iαλ)−n−1un+1(x, λ)

]
, (13)

where

u0(x) = 1, uk(x) =

x∫
a

(
−u′′k−1(t) + q(t)uk−1(t)

)
dt, k = 1, 2, ...n+ 1 (14)

and

un+1(x, λ) = un+1(x) + (2iαλ)
−1

x∫
a

q(t)un+1(t)dt

−
x−a∫
0

{
u′n+1(x− t) + (2iαλ)

−1
K

(0)
n+1(x, t)

}
e−2iαλtdt, (15)
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u′n+1(x, λ) = 2iαλ

x−a∫
0

{
u′n+1(x− t) + (2iαλ)

−1
K

(1)
n+1(x, t)

}
e−2iαλtdt, (16)

in which the kernels K
(0)
n+1(x, t), K

(1)
n+1(x, t) are square summable with respect to t for

each x ∈ [a, π] .

It is very difficult to compute the functions uk(x)
(
k = 1, n

)
by the recurrence

formulas (14), since these formulas have undesirable integration operations. To remove
these difficulties we put

σ(λ, x) =
d

dx
ln

(
1 +

u1(x)

2iαλ
+ ...+

un(x)

(2iαλ)
n +

un+1(λ, x)

(2iαλ)
n+1

)
(17)

and then we have the following representation for the solution of the equation (12) :

z(x, λ) = exp

iαλ (x− a) +

x∫
a

σ(λ, t)dt

 ,

where the function σ(λ, x) also satisfies the equation

σ′(λ, x) + 2iαλσ(λ, x) + σ2(λ, x)− q(x) = 0. (18)

Let us set

Pn(λ, x) = 1 +
n∑

k=1

(2iαλ)−kuk(x),

Qn(λ, x) = Pn(λ, x) + (2iαλ)−n−1un+1(λ, x).

Then the formulas (13) and (17) take the forms

z(x, λ) = eiαλ(x−a)Qn(x, λ),

σ(λ, x) =
P ′
n(λ, x)

Pn(λ, x)
+
u′n+1(λ, x)Pn(λ, x)− un+1(λ, x)P

′
n(λ, x)

(2iαλ)n+1Pn(λ, x)Qn(λ, x)
.

As in [10] we can show that

σ(λ, x) =
n∑

k=1

σk(x)

(2iαλ)k
+
σn(λ, x)

(2iαλ)n
, (19)

where

σ1(x) = q(x), σ2(x) = −q′(x), σ3(x) = q′′(x)− q2(x), ...,

σk+1(x) = −σ′
k(x)−

k−1∑
j=1

σk−j(x)σj(x) (k = 2, 3, ..., n), (20)



K.D. Çoşkun, A.A. Nabiev, S. Saltan 13

σn(λ, x) =

2iαλ
x−a∫
0

σn+1(x− ξ)e−2iαλξdξ +
x−a∫
0

K̃
(1)
n+1(x, ξ)e

−2iαλξdξ

2iαλQn(λ, x)
, x > a, (21)

with the kernel K̃
(1)
n+1(x, ξ) which is square summable with respect to the variable ξ.

Now let us return to our problem (1). Using Lemma 3 we can write the following
solution of Eq. (1):

y(x, λ) = e
iλx+

x∫
0

σ(λ,t)dt
, 0 ≤ x ≤ a, (22)

and

y(x, λ) = A(λ)e
iλµ+(x)+

x∫
a

σ(λ,t)dt
+B(λ)e

iλµ−(x)+
x∫
a

σ(−λ,t)dt
, x ≥ a, (23)

where
µ±(x) = ±αx∓ αa+ a,

A(λ) =
(α+ 1)iλ+ σ(λ, a−)− σ(−λ, a+)

2iαλ+ σ(λ, a+)− σ(−λ, a+)
exp

 a∫
0

σ(λ, t)dt

 ,

B(λ) =
(α− 1)iλ+ σ(λ, a+)− σ(λ, a−)

2iαλ+ σ(λ, a+)− σ(−λ, a+)
exp

 a∫
0

σ(λ, t)dt

 .

Here σ(λ, a+) and σ(λ, a−) indicate the right and the left limits at point x = a.
We see that by using the formulas (22), (23) it can be obtained two solutions y(x, λ)

and y(x,−λ) of equation (1) for λ ̸= 0. By the formula (22), (23) we have for the
Wronskian the following formula:

W [y(x, λ), y(x,−λ)] = Dω(λ, x)e

x∫
0

[σ(λ,t)+σ(−λ,t)]dt
,

where D = 1 if 0 ≤ x ≤ a , D = ω(λ,a−)
ω(λ,a+) if x > a and

ω(λ, x) = −2iλ
√
ρ(x) + σ(−λ, x)− σ(λ, x), 0 ≤ x ≤ π.

Since the Wronskian of two solutions of Eq. (1) doesn’t depend on x we have

W [y(x, λ), y(x,−λ)] =W [y(x, λ), y(x,−λ)]|x=0 = ω(λ, 0),

W [y(x, λ), y(x,−λ)]|x=0 =W [y(x, λ), y(x,−λ)]|x=a = ω(λ, a−)e

a∫
0
[σ(λ,t)+σ(−λ,t)]dt

,

i.e.

ω(λ, a−) = e
−

a∫
0
[σ(λ,t)+σ(−λ,t)]dt

ω(λ, 0). (24)

Hence,

e

x∫
0
[σ(λ,t)+σ(−λ,t)]dt

= ω(λ, 0) (Dω(λ, x))
−1
. (25)
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We conclude that the solutions y(x, λ) and y(x,−λ) are defined for all values of λ which
isn’t a zero of the polynomial λnω(λ, 0) and these solutions are linearly independent
when λ is distinct from zeros of the polynomial λnω(λ, 0). Therefore we have proved the
following theorem.

Theorem 2. Equation (1) has a solution of the form (22), (23) where the function
σ(λ, x) is defined by the formula

σ(λ, x) =
n∑

k=1

σk(x)

(2i
√
ρ (x)λ)k

+
σn(λ, x)

(2i
√
ρ (x)λ)n

(26)

in which the functions σk(x) (k = 1, 2, ..., n) , are defined by the formulas (20), σn(λ, x)
is represented as (21).

Remark. The function σn(λ, x) is defined by the formula (22) for x > a.When 0 ≤ x ≤ a
we put α = 1, a = 0 in the formula (22) and other related formulas (see [10]).

4. Asymptotic Formulas for the Eigenvalues

Consider the characteristic function of the boundary value problem (1), (2). Using the
representation (22), (23) of the solutions y(x, λ), y(x,−λ) we can find the following
expressions for the solutions c(x, λ) and s(x, λ) :

s(x, λ) = −y(x, λ)− y(x,−λ)
ω(λ, 0)

,

c(x, λ) = −y(x, λ)[iλ− σ(−λ, 0)] + y(x,−λ)[iλ+ σ(λ, 0)]

ω(λ, 0)
. (27)

Recall that the characteristic function ∆±(λ) of the boundary value problem (1), (2) is

∆±(λ) = 2± c(π, λ)± s′(π, λ).

From the formulas (27) we have

ω(λ, 0)∆±(λ) = 2± y(π, λ)[iλ− σ(−λ, 0)] + y(π,−λ)[iλ+ σ(λ, 0)]± y′(π, λ)− y′(π,−λ).

From Eq. (22), (23) it is obtained that the equation ∆±(λ) = 0 is equivalent to the
equation

y(π, λ)[iλ− σ(−λ, 0)] + y(π,−λ)[iλ+ σ(λ, 0)]y′(π, λ)− y′(π,−λ) = ∓2ω(λ, 0)

which can be written as(
G1(λ)e

iλµ+(π) +G2(λ)e
−iλµ−(π)

)
e

π∫
0

σ(λ,t)dt
−

−
(
G1(−λ)e−iλµ+(π) +G2(−λ)eiλµ

−(π)
)
e

π∫
0

σ(−λ,t)dt
= ∓2ω(λ, 0), (28)
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where

G1(λ) = [(α+ 1)iλ+ σ(λ, π)− σ(−λ, 0)]A0(λ),

G2(λ) = [(1− α)iλ+ σ(λ, 0)− σ(λ, π)]B0(−λ),

A0(λ) =
σ(−λ, a+)− σ(λ, a−)− (α+ 1)iλ

ω(λ, a+)
,

B0(λ) =
σ(λ, a−)− σ(λ, a+)− (α− 1)iλ

ω(λ, a+)
e

a∫
0

[σ(λ,t)−σ(−λ,t)]dt
.

Multiplying the equation (28) by e

π∫
0

σ(λ,t)dt
and taking into our account the formulas

(25), (26) we find

e
iλµ+(π)+

π∫
0

σ(λ,t)dt
=
ω(λ, 0)

H(λ)

[
∓1±

√
1 +

H(λ)H(−λ)
ω(λ, 0)ω(λ, π)

ω(λ, a+)

ω(λ, a−)

]
, (29)

where

H(λ) = G1(λ) +G2(λ)e
−2iαλ.

Clearly, the formula (29) is written as

e
iλµ+(π)+ 1

2

π∫
0

[σ(λ,t)−σ(−λ,t)]dt
=

=
ω(λ, 0)

H(λ)

√
ω(λ, π)ω(λ, a−)

ω(λ, 0)ω(λ, a+)

[
∓1±

√
1 +

H(λ)H(−λ)
ω(λ, 0)ω(λ, π)

ω(λ, a+)

ω(λ, a−)

]
. (29′)

By the formula (9) of the previous section

∆±(λ) = ∆
(0)
± (λ) + λ−1e|Imλµ+(π)|ε(λ), (30)

where

∆
(0)
± (λ) = 2± (1 +A) cosλµ+(π)± (1−A) cosλµ−(π).

A = 1
2

(
α+ 1

2

)
, lim
|λ|→∞

ε(λ) = 0 and the zeros of the function ∆
(0)
± (λ) are

(
λ0n
)±

= ± nπ

µ+(π)
± θ±n , sup |θ±n | < +∞.

with n = 2k for ’+’ case an n = 2k + 1 for ’−’ case. As it is mentioned in the previous
section

|∆(0)
± (λ)| ≥ Cre

|Imλµ+(π)| (31)

for some Cr > 0 and λ ∈ Zr where Zr denotes the domain which is obtained by removing

balls of radius r (r > 0) centered at the zeros
(
λ0n
)±
. Therefore, using Rouche’s theorem

and the inequalities (30), (31) we can formulate the following theorem.
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Theorem 3. The asymptotic formula√
λ±2k = ± 2kπ

µ+(π)
+ θ±2k + ε±(2k) (32)

is held for the eigenvalues
√
λ±2k of the periodic problem (1), (2+) and the asymptotic

formula √
λ±2k+1 = ±2(k + 1)π

µ+(π)
+ θ±2k+1 + ε±(2k + 1) (33)

is held for the eigenvalues
√
λ±2k+1 of the antiperiodic problem (1), (2−). Here

lim
n→∞

ε±(n) = 0.

Now we will improve the asymptotic formulas (32), (33) by using smoothness of the
function q(x). We can write

H (λ) = −ω(λ, 0) [1 +m(λ)]A0(λ) + ω(λ, 0)m(λ)B0(−λ)e−2iaλ,

where

m(λ) =
σ(λ, 0)− σ(λ, π) + (1− α)iλ

ω(λ, 0)
.

Then

H (λ) = −ω(λ, 0)A0(λ) (1 + r(λ)),

where

r(λ) = m(λ)

(
1− B0(−λ)

A0(λ)

)
e−2iaλ.

Further, since

ω(λ, a−) = −2iλ+ σ(−λ, a−)− σ(−λ, a+)−
(
σ(λ, a−)− σ(λ, a+)

)
+ ω(λ, a+) + 2iαλ

we have

ω(λ, a−)

ω(λ, a+)
= 1 +

σ(λ, a+)− σ(λ, a−)

ω(λ, a+)
+
σ(−λ, a+)− σ(−λ, a−)

ω(−λ, a+)
+

2iλ(α− 1)

ω(λ, a+)
.

If we denote

S(λ) =
σ(λ, a+)− σ(λ, a−)

ω(λ, a+)
+
iλ(α− 1)

ω(λ, a+)
,

then
ω(λ, a−)

ω(λ, a+)
= 1 + S(λ) + S(−λ).

Similarly
ω(λ, π)

ω(λ, 0)
= 1 +m(λ) +m(−λ)
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and we also have

A0(λ) = 1 + S(λ), B0(λ) = −S(λ) exp(
a∫

0

[σ(λ, t)− σ(−λ, t)]dt).

The following lemmas is proved similarly to the Lemma 1.4.3 in [10].

Lemma 4. Let f(x) ∈ L2(0, π) and λk = λ0k + εk (k = 1, 2, ...) where εn = O
(
1
n

)
,

n→ ∞ and λ0k = kπ
µ+(π) + θk, sup |θk| <∞. Then

π∫
0

f(x)e−2iλkxdx = f̃(λ0k) +
g1(k)

k
, f̃(λ0k) =

π∫
0

f(x)e−2iλ0
kxdx,

where
∞∑
k=1

|g1(k)|2 <∞,
∞∑
k=1

∣∣∣f̃(λ0k)∣∣∣2 <∞.

Lemma 5. Let q(x) ∈ Wn
2 [0, π] and the number sequence λk = λ0k + εk satisfies the

condition εk = O
(
1
k

)
, k → ∞. Then

σn(λk, π) = σ̃n+1(λ
0
k) + k−1g1(k),

π∫
0

σ(λk, x)dx =
n+2∑
j=1

dj (2iλk)
−1 − µ+(π)

(2ik)
n+1 σ̃n+1,0(λ

0
k) + k−2g2(k),

where

dj =

π∫
0

σj(x)√
ρ(x)

dx, j = 1, 2, ..., n+ 2,

σ̃n+1,0(λ
0
k) =

a∫
0

σn+1(a− t)e−2iλ0
ktdt+

1

α

π−a∫
0

σn+1(π − t)e−2iαλ0
ktdt,

∞∑
k=1

|gj(k)|2 < ∞, j = 1, 2, and the coefficients dj (j = 1, 2, ...n+ 1) doesn’t depend on n

and k, the coefficient dn+2 doesn’t depend on k and dn+2 = 0 if n = 0.

Let us denote by W̃n
2 [0, π] the subspace of the space Wn

2 [0, π] such that f (k)(0) =

f (k)(π) (k = 0, 1, 2, ..., n− 1) for every f(x) ∈ W̃n
2 [0, π] ⊂ Wn

2 [0, π]. Clearly, W̃
0
2 [0, π] =

L2(0, π). Now let q(x) ∈ W̃n
2 [0, π] and Imq(x) = 0. Because σk(x) is a polynomial with

respect to q(x), q′(x), q′′(x), ..., q(n−1)(x) then q(x) ∈ W̃n
2 [0, π] implies that σk(0) = σk(π)

(k = 1, 2, ...n) . Consequently, according to Eq. (33) we have

σ(λ, 0)− σ(λ, π) =
n∑

k=1

σk(π)

2iλk

(
1− 1

αk

)
+
σn(λ, π)

(2iαλ)
n .
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Let q(x) ∈ L2(0, π) is real. Since σ(λ, 0)−σ(λ, π) = O
(
1
λ

)
, σ(λ, a+)−σ(λ, a−) = O

(
1
λ

)
,

ω(λ, 0) = −2iλ+O
(
1
λ

)
, ω(λ, a+) = −2iαλ+O

(
1
λ

)
we easily compute that

m(λ) =

[
1 +O

(
1

λ2

)][
α− 1

2
+

n∑
k=1

(
1

αk
− 1

)
σk(π)

(2iλ)
k+1

+
σn(λ, π)

αn (2iλ)
n+1

]
,

s(λ) =

[
1 +O

(
1

λ2

)][
1− α

2α
−

n∑
k=1

(
1

αk
− 1

)
1

α

σk(a)

(2iλ)
k+1

+
σn(λ, a

−)

α (2iλ)
n+1

]
,

r(λ) = m(λ)

(
1 +

S(−λ)
1 + S(λ)

y(a,−λ)
y(a, λ)

)
. (34)

From Eq. (24) and (27) we have that

y(a,−λ)y(a, λ) = ω(λ, 0)

ω(λ, a−)
, y(a,−λ)− y(a, λ) = ω(λ, 0)s(a, λ).

Multiplying the second equality by y(a, λ) and taking into account the first one we obtain

y(a, λ) = −ω(λ, 0)s(a, λ)

[
1∓

√
1 +

4

ω(λ, 0)ω(λ, a−)S2(a, λ)

]
.

Since ω(−λ, 0) = −ω(λ, 0) and s(a,−λ) = −s(a, λ) we have

y(a,−λ) = −y(a, λ).

Consequently,

r(λ) = m(λ)

(
1− S(−λ)

1 + S(λ)

)
=
α(α− 1)

α+ 1
+O

(
1

λ2

)
.

From equations (34) we also have

1 +m(λ) +m(−λ) = α+O

(
1

λ2

)
, (35)

1 + S(λ) + S(−λ) = 1

α
+O

(
1

λ2

)
, (36)

1 + S(λ)− S(−λ) = 1 +O

(
1

λ2

)
, (37)

(1 + r(λ)) (1 + S(λ)) =
α2 + 1

2α
+O

(
1

λ2

)
. (38)

Since
(1 + S(λ)) (1 + r(λ)) = 1 + S(λ) +m(λ)δ(λ),

where
δ(λ) = 1 + S(λ)− S(−λ), (39)
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the formula (29′) takes the form of

e
iλµ+(π)+ 1

2

π∫
0

[σ(λ,t)−σ(−λ,t)]dt
= −

√
[1 +m(λ) +m(−λ)] [1 + S(λ) + S(−λ)]

1 + S(λ) +m(λ)δ(λ)
×

×

[
∓1± i

√
(S(λ)−m(λ)δ(−λ)) (S(−λ)−m(−λ)δ(λ))
[1 +m(λ) +m(−λ)] [1 + S(λ) + S(−λ)]

]
. (40)

Since square roots of the eigenvalues are zeros of the equation (40) we have

(
iθ±k + iε±(k)

)
µ+ (π) +

1

2

π∫
0

[σ(λ, t)− σ(−λ, t)]dt|λ= kπ

µ+(π)
+θ±

k +ε±(k)

=

{
1

2
ln[(1 +m(λ) +m(−λ)) (1 + S(λ) + S(−λ))]− ln(1 + S(λ) +m(λ)δ(λ))

+ ln

[
1− i

(S(λ)−m(λ)δ(−λ)) (S(−λ)−m(−λ)δ(λ))
[1 + S(λ) + S(−λ)] [1 +m(λ) +m(−λ)]

]}
|λ=± kπ

µ+(π)
+θ±

k +ε(±k), (41)

as |λ| → +∞. According to equations (34) from Eq. (41) we obtain that

ε±(k) + θ±k =
β

µ+(π)
+O

(
1

k

)
, k → ±∞,

where

β = arctan

(
−
∣∣α2 − 1

∣∣
2α

)
.

Using the Lemma 5 and the asymptotic formulas (35)− (39) in the equation (41) by the
elementary asymptotic methods (see [10]) we have that√

λ±k =
kπ

µ+(π)
+ θ±k + ε±(k) =

kπ

µ+(π)
+

β

µ+(π)

+
∑

1≤y+1≤n+2

a2j+1(2k)
−2j−1 ± |en (2k)| (2k)−n−1 + γ±n k

−n−2, (42)

where

∞∑
k=0

∣∣γ±n ∣∣2 <∞, en (2k) =

a∫
0

q(a− t)e−2iλ0
ktdt+

1

α

π−a∫
0

q(π − t)e−2iαλ0
ktdt,

a1 =

π∫
0

q(t)√
ρ(t)

dt

and the numbers a2j+1 do not depend on k. Therefore we have proved the following
theorem.
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Theorem 4. If q(x) ∈ W̃n
2 [0, π] and Imq(x) = 0 the eigenvalues λ±2k of the periodic

boundary value problem and the eigenvalues λ±2k+1 of the antiperiodic boundary value
problem have the asymptotic formula (42).

From this theorem and the formula (42) we have the following corollary.

Corollary 2. Let q(x) ∈ L2[0, π]. Then q(x) ∈ W̃n
2 [0, π] if and only if

∞∑
k=1

k2(n+1)

∣∣∣∣√λ+k −
√
λ−k

∣∣∣∣2<∞.
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1986.

11. Marchenko V.A., Ostrovskii I.V. A characterization of the spectrum of Hill’s
operator. Dokl. Akad. Nauk SSSR, 1975, 222 (6), pp. 1283-1286 (in Russian).

12. Nabiev A.A., Amirov R.Kh. On the boundary value problem for the Sturm-Liouville
equation with the discontinuous coefficient. Math. Methods Appl. Sci., 2013, 36 (13),
1685-1700.
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