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Abstract. An nonself-adjoint Sturm–Liouville problem with two polynomials in nonsep-
arated boundary conditions are considered. It is shown that this problem have an infinite
countable spectrum. The corresponding inverse problems is solved. Criterions for unique
reconstruction of the nonself-adjoint Sturm-Liouville problem by eigenvalues of this prob-
lem and the spectral data of an additional problem with separated boundary conditions
are proved. Schemes for unique reconstruction of the Sturm-Liouville problems with poly-
nomials in nonseparated boundary conditions and corresponding examples are given.
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1. Introduction

Let L denote the Sturm–Liouville problem

ly = −y′′ + q(x) y = λ y = s2 y, (1)

U1(y) = −h y(0) + y′(0) + a(λ) y(π) = 0, (2)
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U2(y) = b(λ) y(0) + (−H2 +H λ) y(π) + (λ−H1) y
′(π) = 0, (3)

where q(x) ∈ L2(0, π) is a real-valued function; h,H,H1,H2 ∈ R;

ρ := HH1 −H2 > 0; (4)

the functions a(λ) and b(λ) are polynomials.
The inverse Sturm-Liouville problem for L in the case of separated boundary condi-

tions without polinomials have been well studied (see [5], [8], [9]). The inverse Sturm-
Liouville problem for L with spectral parameter in separated boundary conditions have
been studied in [1], [3], [6], [7], [10]. The inverse Sturm-Liouville problem with unknown
coefficients in nonseparated boundary conditions was studied by V.A. Sadovnichii, V.A.
Yurko, V.A. Marchenko, O.A. Plaksina, M.G. Gasymov, I.M. Guseinov, I.M. Nabiev, and
other authors (see [2], [4], [11]-[14], [16]-[18]). For nonself-adjoint SturmLiouville prob-
lem with polinomials in nonseparated boundary conditions no uniqueness theorems have
been obtained.

The analysis of the inverse nonself-adjoint problem Sturm–Liouville with nonsepa-
rated boundary conditions was initiated in [13]. It was shown there that three spectra
and two sets of weight numbers and residues of certain functions are sufficient for the
unique reconstruction of a nonself-adjoint Sturm–Liouville problem with nonseparated
boundary conditions. Moreover, these spectral data were used essentially [15]. Later, there
were attempts to choose the problem to be reconstructed or auxiliary problems so as to
use less spectral data for the reconstruction [2], [11]–[14], [16]–[18]. In particular, in [11] a
nonself-adjoint problem was replaced by a self-adjoint one, and it was shown that, for its
unique reconstruction, as spectral data it suffices to use three spectra, some sequence of
signs, and some real number. In [2], an auxiliary problem was chosen so as to reduce the
number of spectral data required for the reconstruction of a self-adjoint problem by only
two spectra, some sequence of signs, and some real number were used as spectral data.
In [16] a nonself-adjoint Sturm–Liouville problem was uniquely reconstructed by three
spectrum. In the present paper, we consider a nonself-adjoint Sturm–Liouville problem
with polinomials in nonseparated boundary conditions. We show that, for its unique re-
construction, one can use also less spectral data as compared with the reconstruction
of a self-adjoint problem in [2], [11], [13]; more precisely, we need finite eigenvalues of
the nonself-adjoint Sturm–Liouville problem, and, in addition, a spectrum and norming
constants of an additional problem with separated boundary conditions.

2. Spectrum of L

We denote the matrix composed of the coefficients alk in the boundary conditions (2),
(3) by A:

A =

∥∥∥∥a11 a12 a13 a14a21 a22 a23 a24

∥∥∥∥
and its minors composed of the i-th and j-th columns by Mij :

Mij =

∣∣∣∣a1i a1ja2i a2j

∣∣∣∣ ,
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where
a11 = −h, a12 = 1, a13 = a(λ), a14 = 0,

a21 = b(λ), a22 = 0, a23 = −H2 +H λ, a24 = λ−H1.

Note that rankA = 2, since M24 = λ−H1 ̸= 0.

Theorem 1. If condition (4) holds, then problem L have an infinite countable spectrum.

Proof. The eigenvalues of Problem L are the roots of the entire function [8, pp. 26-27],
[9, pp. 14-15]

∆(λ) =M12 +M34 +M32 y1(π, λ) +M42 y
′
1(π, λ)+

+M13 y2(π, λ) +M14 y
′
2(π, λ),

where y1(x, λ) y2(x, λ) are linearly independent solutions to differential equation (1)
satisfying the conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1. (5)

Therefore,

∆(λ) = −b(λ) + a(λ) (λ−H1) + (H2 −H λ) y1(π, λ) + (H1 − λ) y′1(π, λ)+

+(hH2 − hH λ− a(λ) b(λ)) y2(π, λ) + h (H1 − λ) y′2(π, λ).

For problem L we have the following alternatives [9, p. 14].
1. Every number λ is an eigenvalue for L;
2. Problem L has at most denumerably many eigenvalues (in particular cases, none

at all), and these eigenvalues can have no finite limit-point.
Let us to prove the zero set of the all eigenvalues of problem L can not be C, finite

or empty.
The following asymptotic relations hold [9, pp. 52-54]:

y1(x, λ) = cos sx+ 1
s u(x) sin sx+O

(
1
s2

)
,

y2(x, λ) =
1
s sin sx− 1

s2 u(x) cos sx+O
(

1
s3

)
,

y′1(x, λ) = −s sin sx+ u(x) cos sx+O
(
1
s

)
,

y′2(x, λ) = cos sx+ 1
s u(x) sin sx+O

(
1
s2

)
,

(6)

where u(x) = 1
2

x∫
0

q(t) dt, for sufficiently large λ ∈ R ([9, pp. 62–65]).

The relation y1(π, λ) = y′2(π, λ) holds if and only if q(x) = q(x− π) [17, Lemma 4].
If q(x) = q(π − x), then

∆(λ) = −b(λ) + a(λ) (λ−H1) + (H2 −H λ+ h (H1 − λ)) y1(π, λ)+

+(H1 − λ) y′1(π, λ) + (hH2 − hH λ− a(λ) b(λ)) y2(π, λ). (7)

It follows from (6) and (7) that the zero set of the function ∆(λ) is finite iff the following
conditions hold:

−b(λ) + a(λ) (λ−H1) ̸≡ C = const, (8)
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(H2 −H λ+ h (H1 − λ)) y1(π, λ) + (H1 − λ) y′1(π, λ)+

+(hH2 − hH λ− a(λ) b(λ)) y2(π, λ) ≡ 0. (9)

It follows from (6) and (7) that the zero set of the function ∆(λ) is C or empty if the
following conditions hold: (9) and

−b(λ) + a(λ) (λ−H1) ≡ C = const. (10)

Since condition (4) holds we see that (H2 −H λ+ h (H1 − λ)) ̸= 0. Indeed, if (H2 −
H λ+h (H1−λ)) = 0, then h+H = 0 and H2+hH1 = 0. From this we obtain h = −H
and H2−HH1 = 0. This contradicts condition (4). The contradiction proves inequalities
(H2 −H λ+ h (H1 − λ)) ̸= 0 and (H2 −H λ+ h (H1 − λ)) y1(π, λ) ̸≡ 0.

Since (H2 −H λ+ h (H1 − λ)) y1(π, λ) ̸≡ 0 and asymptotic relations (6) hold, we see
that identity (9) is not true. So for case q(x) = q(π−x) the zero set of the function ∆(λ)
can not be C, finite or empty. This completes the proof of Theorem 1. J

Let be q(x) ̸= q(π − x). It follows from (6) and (7) that the zero set of the function
∆(λ) is finite iff the following conditions hold: (8) and

(H2 −H λ) y1(π, λ) + (H1 − λ) y′1(π, λ) + (hH2 − hH λ− a(λ) b(λ)) y2(π, λ)+

+h (H1 − λ) y′2(π, λ) ≡ 0. (11)

If condition (4) holds, then (H2−H λ) y1(π, λ)+h (H1−λ) y′2(π, λ) ̸≡ 0. Assume the
converse. Then we have (H2 −H λ) y1(π, λ) + h (H1 − λ) y′2(π, λ) ≡ 0. From asymptotic
relations (6) it follows h+H = 0 (the elder coefficient must be zero). If h+H = 0, then
the elder coefficient is H2 + hH1. It must be zero too. From this we obtain h = −H and
H2 − HH1 = 0. This contradicts condition (4). As above the contradiction proves the
zero set of the function ∆(λ) can not be C, finite or empty.

From the proof we see that Theorem 1 will be true if we replace condition (4) by the
following condition:

HH1 −H2 ̸= 0.

3. Inverse Problem for L

Together with problem L, we consider the following problem with separated boundary
conditions.

Problem L1. The Equation (1) with separated boundary conditions

U1(y) = −h y(0) + y′(0) = 0,

U2(y) = (−H2 +H λ) y(π) + (λ−H1) y
′(π) = 0.

Let the functions φ(x, λ) and ψ(x, λ) be the solutions of equation (1) under the initial
conditions

φ(0, λ) = 1, φ′(0, λ) = h,

ψ(π, λ) = H1 − λ, ψ′(π, λ) = λH −H2.
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By definition, put

χ(λ) = φ(x, λ)ψ′(x, λ)− φ′(x, λ)ψ(x, λ),

which is independent of x ∈[0,π]. The function χ(λ) is entire and has zeros at the eigen-
values µn of Problem L1. The set of eigenvalues µn of Problem L1 is countable, consists
of real numbers and for each eigenvalue µnthere exists such a number kn ̸= 0 that
ψ(x, µn) = kn φ(x, µn).

Numbers γn are norming constants if [3]:

γn =

∫ π

0

φ2(x, µn) dx+
(φ′(π, µn) +H φ(π, µn))

2

ρ
.

The numbers {µn, γn} are called spectral data of problem L1.
For problem L, we pose the inverse problem.

Inverse problem. Suppose that the potential function q(x) and the coefficients in
the boundary conditions of problem L are unknown, while the spectral data {µn, γn} of
problem L1 and eigenvalues λm of problem L are known. It is required to find q(x) and
boundary conditions of problem L from the spectral data {µn, γn} of problem L1 and
eigenvalues λm of problem L.

4. A Criterion for Unique Reconstruction of Problem
L by the Spectral Data of Problem L1 and All
Eigenvalues of Problem L

Theorem 2. Suppose condition (4) holds. Then problem L can be uniquely reconstructed
from the spectral data {µn, γn} of problem L1 and all eigenvalues λm of problem L if
and only if the polynomials a(λ) and b(λ) have the form

a(λ) = a0 λ
m0 + a1 λ

m1 + · · ·+ an−1 λ
mn−1 , b(λ) = b0 λ

p0 + b1 λ
p1 + · · ·+ bn−1 λ

pn−1 ,

where

mi + 1 ̸= pj for all i, j = 1, 2, . . . , n− 1. (12)

Proof. It follows from [3] that if HH1−H2 > 0, then the function q(x) and the numbers
h, H, H1, and H2 is uniquely determined by the spectral data {µn, γn} of problem L1.

It remains to check that the polynomials a(λ) and b(λ) are uniquely reconstructed
from the eigenvalues λm of problem L if condition (12) holds, and the polynomials a(λ)
and b(λ) can not be uniquely reconstructed from the eigenvalues λm of problem L if
condition (12) does not hold.

Suppose there exist polynomials ã(λ) and b̃(λ) for which the spectrum of problem L
have the same eigenvalues λm.

Since spectrum of Problem L is countable we see that according to Hadamards theo-
rem, the function ∆(λ) (which is entire of order 1/2) can be reconstructed from its zeros
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up to a factor C ̸= 0. Therefore, the functions ∆(λ) for the polynomials a(λ) and b(λ),

and ∆̃(λ) polynomials ã(λ) and b̃(λ) are related by the identity

∆̃(λ) ≡ C ∆(λ), (13)

where C is a nonzero constant.
If q(x) = q(π − x), then from (13) and (7) we obtain the following identity

∆̃(λ)− C ∆(λ) ≡ −
(
b̃(λ)− C b(λ)

)
+
(
ã(λ)− C a(λ)

)
(λ−H1)+

+(1− C) (H2 −H λ+ h (H1 − λ)) y1(π, λ)+

+(1− C) (H1 − λ) y′1(π, λ) + (1− C) (hH2 − hH λ) y2(π, λ)−

−
(
ã(λ) b̃(λ)− C a(λ) b(λ)

)
y2(π, λ). (14)

If condition (4) holds, then (H2 − H λ + h (H1 − λ)) y1(π, λ) ̸≡ 0. (See the proof
of theorem 1.) Since (H2 − H λ + h (H1 − λ)) y1(π, λ) ̸≡ 0 and asymptotic relations
(6) hold, we see that the functions 1, (H2 − H λ + h (H1 − λ)) y1(π, λ), and y2(π, λ)
are polynomially independent. (We say that the functions f1(λ), f2(λ), . . . , fn(λ) are
polynomially independent if their combination

P1(λ) f1(λ) + P2(λ) f2(λ) + · · ·+ Pn(λ) fn(λ)

with the arbitrary polynomials P1(λ), P2(λ), . . . , Pn(λ) is identically equal to zero only
in the case when Pk(λ) ≡ 0 (k = 1, 2, . . . , n).) From this, (12) and (14) we have

1− C = 0, ã(λ) = a(λ), b̃(λ) = b(λ), (15)

∆(λ) = −b(λ) + a(λ) (λ−H1) + (H2 −H λ) y1(π, λ) + (H1 − λ) y′1(π, λ)+

+(hH2 − hH λ− a(λ) b(λ)) y2(π, λ) + h (H1 − λ) y′2(π, λ). (16)

If q(x) ̸= q(π − x), from (11) and (13) we get

∆̃(λ)− C ∆(λ) ≡ −
(
b̃(λ)− C b(λ)

)
+
(
ã(λ)− C a(λ)

)
(λ−H1)+

+(1− C)
(
(H2 −H λ) y1(π, λ) + h (H1 − λ) y′2(π, λ)

)
+

+(1− C) (H1 − λ) y′1(π, λ) + (1− C) (hH2 − hH λ) y2(π, λ)−

−
(
ã(λ) b̃(λ)− C a(λ) b(λ)

)
y2(π, λ). (17)

If condition (4) holds, then (H2 − H λ) y1(π, λ) + h (H1 − λ) y′2(π, λ) ̸≡ 0. (See the
proof of theorem 1.) Since (H2 −H λ) y1(π, λ) + h (H1 − λ) y′2(π, λ) ̸≡ 0 and asymptotic
relations (6) hold, we see that the functions 1, (H2 −H λ) y1(π, λ)+h (H1 −λ) y′2(π, λ),
and y2(π, λ) are polynomially independent. From this, (12) and (17) we get (15). Thus,
Problem L can be uniquely reconstructed from the spectral data {µn, γn} of problem L1

and all eigenvalues λm of problem L. If condition (12) holds the theorem is proved. J
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Suppose condition (12) does not hold. It follows from linear independence of core-
sponding functions that C = 1 (see above). If condition (12) does not hold there exist
i = i0 and j = j0 such that mi0 +1 = pj0 . Then for all ai0 and bj0 such that ai0 − bj0 = 0
identity (14) or (17) holds (as C = 1). This proves that in this case the problem of
reconstructing the polinomials a(λ) and b(λ) has nonunique solution.

Remark 1. If problem L is a spectral problem with separated boundary conditions
(a(λ) ≡ b(λ) ≡ 0), then it coincides with problem L1. By taking the values µk for λk, we
find that N.J. Guliyev’s Theorem 4.1 [3] is a special case of Theorem 2.

Example 1. If H1 = 0, a(λ) ≡ a, b(λ) ≡ b λ, then from (14) we see that Problem L
have the same eigenvalues for all a and b, such that a = b.

In next two sections we consider special cases of Condition (12):
(i) the polynomial a(λ) is unknown, the polynomial b(λ) is known;
(ii) the polynomial a(λ) is known, the polynomial b(λ) is unknown;
(iii) b(λ) = b0 + b1 λ + a2 λ

2 + · · · + bn−1 λ
n−1, a(λ) = an λ

n + an+1 λ
n+1 + · · · +

a2n−1 λ
2n−1.

For unique reconstruction of Problem L in these cases we use and the spectral data
of problem L1 and only a finite set of eigenvalues of Problem L.

5. Criterions for Uniquely Reconstruction Problem L
with One Unknown Polinomial by the Spectral Data
of Problem L1 and Finite Set of Eigenvalues of
Problem L

In this section we consider the following special cases of Condition (12):
(i) the polynomial a(λ) is unknown, the polynomial b(λ) is known;
(ii) the polynomial a(λ) is known, the polynomial b(λ) is unknown.
For unique reconstruction of Problem L in these cases we use and the spectral data

of problem L1 and only a finite set of eigenvalues of Problem L.

Theorem 3. Suppose condition (4) holds, the polynomial b(λ) and the eigenvalues λk
(k = 1, 2, . . . , n) of problem L are known; and the potential function q(x), the numbers
h, H, H1, H2, and polynomial

a(λ) = a0 + a1 λ+ a2 λ
2 + · · ·+ an−1 λ

n−1

are unknown. Then problem L is uniquely reconstructed from the spectral data {µn, γn}
of problem L1 and n non-zero mutually different eigenvalues λk (k = 1, 2, . . . , n) if and
only if the following condition

b(λk) y2(π, λk)− λk +H1 ̸= 0, k = 1, 2, . . . , n, (18)

holds (The procedure for constructing the function y2(π, λ) from the spectral data
{µn, γn} of problem L1 is clear from proof the theorem.).
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Proof. It follows from [3] that if HH1−H2 > 0, then the function q(x) and the numbers
h, H, H1, and H2 is uniquely determined by the spectral data {µn, γn} of problem L1.
The procedure for recovering the function q(x) and the numbers h,H,H1, andH2 is given
in [3]. Since the function q(x) is known, we can find the solution y2(π, λ) to differential
equation (1) satisfying the conditions (5) and consider condition (18).

It remains to check that the polynomials a(λ) is uniquely reconstructed from the
eigenvalues λk (k = 1, 2, . . . , n) of problem L if condition (18) holds, and the polynomials
a(λ) is not uniquely reconstructed from the eigenvalues λk (k = 1, 2, . . . , n) of problem
L if condition (18) does not hold.

Suppose condition (18) holds. Substituting the known eigenvalues of problem L into
(16), we obtain a system of algebraic equations for unknown coefficients a0, a1, a2, . . . ,
an−1:

∆(λk) = −b(λk) + a(λk) (λk −H1) + (H2 −H λk) y1(π, λk) + (H1 − λk) y
′
1(π, λk)+

+(hH2 − hH λk − a(λk) b(λk)) y2(π, λk) + h (H1 − λk) y
′
2(π, λk) = 0,

or

a0 + a1 λk + a2 λ
2
k + · · ·+ an−1 λ

n−1
k =

= (b(λk) y2(π, λk)− λk +H1)
−1

(
− b(λk) + (H2 −H λk) y1(π, λk)+

+(H1 − λk) y
′
1(π, λk) + (hH2 − hH λk) y2(π, λk) + h (H1 − λk) y

′
2(π, λk)

)
, (19)

where k = 1, 2, . . . , n.
The determinant of system (19) w.r.t. unknowns a0, a1, a2, . . . , an−1, is the Vander-

monde determinant

∆ =

∣∣∣∣∣∣∣∣
1 λ1 . . . λ

n−1
1

1 λ2 . . . λ
n−1
2

. . .
1 λn . . . λ

n−1
n

∣∣∣∣∣∣∣∣ = (λn − λn−1) . . . (λn − λ1) . . . (λ2 − λ1) ̸= 0.

Hence, system of equations (10) has the unique solution determined, for example, by
Cramers formulae:

a0 =
∆1

∆
, . . . , an−1 =

∆n

∆
,

where the determinants ∆k (k = 1, . . . , n) are obtained from determinant ∆ by replacing
ith column by the column of the right hand sides in system of equations (19). For case
condition (18) holds the theorem is proved. J

Suppose condition (18) does not hold. Then among n non-zero mutually different
eigenvalues λk (k = 1, 2, . . . , n) there exists the eigenvalue λk = ν such that

b(ν) y2(π, ν)− ν +H1 = 0.
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Without loss of generality, we can assume that ν = λ1. Substituting the known eigen-
values of problem L into (16), we obtain a system of algebraic equations for unknown
coefficients a0, a1, a2, . . . , an−1:

(b(λk) y2(π, λk)− λk +H1) (a0 + a1 λk + a2 λ
2
k + · · ·+ an−1 λ

n−1
k ) =

=
(
− b(λk) + (H2 −H λk) y1(π, λk)+

+(H1 − λk) y
′
1(π, λk) + (hH2 − hH λk) y2(π, λk) + h (H1 − λk) y

′
2(π, λk)

)
,

(20)

where k = 1, 2, . . . , n.
Since (b(λ1) y2(π, λ1) − λ1 + H1) = 0, we see that the first equation of this system

does not consist (a0+a1 λ1+a2 λ
2
1+· · ·+an−1 λ

n−1
1 ). System of linear algebraic equations

(20) has n unknowns and n−1 equations. So the system of equations (20) has nonunique
solution. This completes the proof of Theorem 3.

Theorem 4. Suppose condition (4) holds, the polynomial a(λ) and the eigenvalues λk
(k = 1, 2, . . . , n) of problem L are known; and the potential function q(x), the numbers
h, H, H1, H2, and polynomial

b(λ) = b0 + b1 λ+ b2 λ
2 + · · ·+ bn−1 λ

n−1

are unknown. Then problem L can be uniquely reconstructed from the spectral data
{µn, γn} of problem L1 and n non-zero mutually different eigenvalues λk if and only
if the following condition

1 + a(λk) y2(π, λk) ̸= 0, k = 1, 2, . . . , n, (21)

holds.

Proof. It follows from [3] that if HH1−H2 > 0, then the function q(x) and the numbers
h, H, H1, and H2 is uniquely determined by the spectral data {µn, γn} of problem L1.
The procedure for recovering the function q(x) and the numbers h, H, H1, and H2 is
given in [3]. Since the function q(x) is known, we can find the solutions y1(π, λ) and
y2(π, λ) to differential equation (1) satisfying the conditions (5) and consider condition
(21).

It remains to check that the polynomials b(λ) is uniquely reconstructed from the
eigenvalues λk (k = 1, 2, . . . , n) of problem L if condition (21) holds, and the polynomials
b(λ) is not uniquely reconstructed from the eigenvalues λk (k = 1, 2, . . . , n) of problem
L if condition (21) does not hold.

Suppose condition (21) holds. Substituting the known eigenvalues of problem L into
(16), we obtain a system of algebraic equations for unknown coefficients b0, b1, b2, . . . ,
bn−1:

b0 + b1 λk + b2 λ
2
k + · · ·+ bn−1 λ

n−1
k =

= (1 + a(λk) y2(π, λk))
−1

(
a(λk) (λk −H1) + (H2 −H λk) y1(π, λk)+

+(H1 − λk) y
′
1(π, λk) + (hH2 − hH λk) y2(π, λk) + h (H1 − λk) y

′
2(π, λk)

)
= 0, (22)
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where k = 1, 2, . . . , n.
The determinant of system (22) w.r.t. unknowns b0, b1, b2, . . . , bn−1, is the Vander-

monde determinant

∆ =

∣∣∣∣∣∣∣∣
1 λ1 . . . λ

n−1
1

1 λ2 . . . λ
n−1
2

. . .
1 λn . . . λ

n−1
n

∣∣∣∣∣∣∣∣ = (λn − λn−1) . . . (λn − λ1) . . . (λ2 − λ1) ̸= 0.

Hence, system of equations (10) has the unique solution determined, for example, by
Cramers formulae:

b0 =
∆1

∆
, . . . , bn−1 =

∆n

∆
,

where the determinants ∆k (k = 1, . . . , n) are obtained from determinant ∆ by replacing
ith column by the column of the right hand sides in system of equations (22). For case
condition (21) holds the theorem is proved.

Suppose condition (21) does not hold. Then among n non-zero mutually different
eigenvalues λk (k = 1, 2, . . . , n) there exists the eigenvalue λk = ν such that

1 + a(ν) y2(π, ν) = 0.

Without loss of generality, we can assume that ν = λ1. Substituting the known eigen-
values of problem L into (16), we obtain a system of algebraic equations for unknown
coefficients b0, b1, b2, . . . , bn−1:

(1 + a(λk) y2(π, λk)) (b0 + b1 λk + b2 λ
2
k + · · ·+ bn−1 λ

n−1
k ) =

= a(λk) (λk −H1) + (H2 −H λk) y1(π, λk) + (H1 − λk) y
′
1(π, λk)+

+(hH2 − hH λk) y2(π, λk) + h (H1 − λk) y
′
2(π, λk), (23)

where k = 1, 2, . . . , n.
Since 1+a(λ1) y2(π, λ1) = 0, we see that the first equation of this system does not con-

sist (b0+b1 λk+b2 λ
2
k+· · ·+bn−1 λ

n−1
k ). System of linear algebraic equations (20) has n un-

knowns and n−1 equations. So the system of equations (23) has nonunique solution. This
completes the proof of Theorem 4. J

6. A Unique Reconstruction of Problem L by a Finite
Set of Its Eigenvalues and the Spectral Data of
Problem L1

In this section we consider the following special case of Condition (12):
(iii) b(λ) = b0+b1 λ+a2 λ

2+· · ·+bn−1 λ
n−1, a(λ) = an λ

n+an+1 λ
n+1+· · ·+a2n−1 λ

2n−1.
For unique reconstruction of Problem L in these cases we use and the spectral data

of problem L1 and only a finite set of eigenvalues of Problem L.
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Theorem 5. Suppose condition (4) holds, the polynomial b(λ) and the eigenvalues λk
(k = 1, 2, . . . , n) of problem L are known; and the potential function q(x), the numbers
h, H, H1, H2, and polynomials

b(λ) = b0 + b1 λ+ a2 λ
2 + · · ·+ bn−1 λ

n−1, a(λ) = an λ
n + an+1 λ

n1 + · · ·+ a2n−2 λ
2n−1

are unknown. Then problem L can be uniquely reconstructed from the spectral data
{µn, γn} of problem L1 and n non-zero mutually different eigenvalues λk (k =
1, 2, . . . , n) such that the determinant

|1, . . . , λn−1
k , λnk (λk −H1), . . . , λ

2n−2
k (λk −H1), y2(π, λk), . . . , λ

2n−2
k y2(π, λk)|k=1,...,3n−1.

(24)
is not equal to zero.

Proof. It follows from [3] that if HH1−H2 > 0, then the function q(x) and the numbers
h, H, H1, and H2 is uniquely determined by the spectral data {µn, γn} of problem L1.

It remains to check that the polynomials a(λ) is uniquely reconstructed from the
eigenvalues λk (k = 1, 2, . . . , n) of problem L.

Denote by

xi, i = 1, 2, . . . , n,

the unknown coefficients bi (i = 0, 1, . . . , n− 1) of the polynomial a(λ); denote by

xi, i = n+ 1, n+ 2, . . . , 2n,

the unknown coefficients −ai (i = 0, 1, . . . , n− 1) of the polynomial b(λ). Denote by

xi, i = 2n+ 1, 2n+ 2, . . . , 3n− 1,

the different coefficients of the polynomial a(λ) b(λ).

Substituting the 3n−1 known eigenvalues of problem L into (16), we obtain a system
of algebraic equations for unknown coefficients xi (i = 2n+ 1, 2n+ 2, . . . , 3n− 1):

x1 + x2 λk + x3 λ
2
k + · · ·+ xn λ

n−1
k +

+(xn+1 λ
n
k + xn+2 λ

n+1
k + xn+3 λ

n+2
k + · · ·+ x2n λ

2n−1
k ) (λk −H1)+

+(x2n+1 λ
n
k + x2n+2 λ

n+1
k + x2n+3 λ

n+2
k + · · ·+ x3n−1 λ

3n−2
k ) y2(π, λk) =

= (H2 −H λk) y1(π, λ) + (H1 − λk) y
′
1(π, λk)+

+(hH2 − hH λk) y2(π, λk) + h (H1 − λk) y
′
2(π, λk), k = 1, 2, . . . 3n− 1. (25)

The determinant of system (25) w.r.t. unknowns xi, i = 1, ..., 3n−1, is (24). If this deter-
minant is not equal to zero the system of equations (25) has a unique solution. This com-
pletes the proof of Theorem 5. J
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7. Examples

We consider using theorems 3, 4 and 5.

Procedure of identification of Problem L. On the basis of the proofs of Theorem
3, 4 and 5 one can construct an algorithm for the unique identification of problem L:

1. On the basis of spectral data {µn, γn} of problem L1, we find an function q(x)
and numbers h, H, H1, and H2; i.e., we construct problems L1. It is found with the
use of well-known method of identification of a SturmLiouville problem with separated
boundary conditions [3].

2. For the found function q(x), we find linearly independent solutions y1(π, λ) and
y2(π, λ) to differential equation (1) satisfying the conditions (5).

3. For the found polinomials a(λ) and (or) b(λ), we use methods from the proofs of
theorems 3, 4 or 5. We thereby completely reconstruct problem L.

In all three examples, we assume that the spectral data of eigenvalue problem L1

are the following:

µ0 = 0, µ1 = 1
4 , µk = (k − 1)2, k ≥ 2,

γ0 = π, γk = π
2 , k ≥ 1.

In this case, we have

q(x) =
2(π + x) sinx+ 4(1 + cosx)

(π + x+ sinx)2
, h = − 2

π
, H = 0, H1 =

1

4
, H2 = − 1

8π
.

It follows from [3]. Below, for simplicity, we assume that these values have already been
found at the step for the identification of problems L1. In addition, we assume that
linearly independent solutions y1(x, λ) and y2(x, λ) of Equation (1) with condition (5)
have been found. Then, in this case, we have (16).

Example 2. Suppose a(λ) = a0 + a1 λ+ a2 λ
2 + a3 λ

3, b(λ) ≡ 0 and the eigenvalues of
Problem L are the following:

λ1 = −17.768; λ2 = 1.9118− 1.0160i; λ3 = 1.9118 + 1.0160i; λ4 = 9.2515− 29.228i.

Then the system of equations (19) has the following form

−18.018a0 + 320.15a1 − 5688.4a2 + 1.0107 · 105a3 = 3.8785105,

(1.6618− 1.0160 i) a0 + (2.1448− 3.6308 i) a1 + (0.41148− 9.1204 i) a2−

−(8.4796 + 17.854 i) a3 = −26.733− 107.06 i,

(1.6618 + 1.0160 i) a0 + (2.1448 + 3.6308 i) a1 + (0.41148 + 9.1204 i) a2+

+(−8.4796 + 17.854 i) a3 = −26.733 + 107.06 i,

(9.0015− 29.228 i) a0 + (−771.00− 533.50 i) a1 + (−22726 + 17599 i) a2+

+(3.0414 · 105 + 8.2706 · 105 i) a3 = 1.1468 · 106 + 3.3599 · 106 i. (26)
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System of equations (26) has the unique solution a0 = 1.0000, a1 = 2.0000, a2 =
3.0000, a3 = 4.0000. Consequently, a(λ) = 1+2λ+3λ2+4λ3 and problem L is following:

ly = −y′′ + 2 (π + x) sinx+ 4 (1 + cosx)

(π + x+ sinx)2
y = λ y = s2 y,

2

π
y(0) + y′(0) + (1 + 2λ+ 3λ2 + 4λ3) y(π) = 0,

1

8π
y(π) +

(
λ− 1

4

)
y′(π) = 0.

Example 3. Suppose a(λ) ≡ 0, b(λ) = b0 + b1 λ + b2 λ
2 + b3 λ

3 and the eigenvalues of
problem L are the following:

λ1 = −17.978; λ2 = 0.25345; λ3 = 1.9411; λ4 = 5.0550 + 3.7554 i.

Then system of equations (22) has the following form

−b0 + 17.978 b1 − 323.22 b2 + 5810.9 b3 = 11333,

−b0 − 0.25345 b1 − 0.064237 b2 − 0.016281 b3 = −1.60370,

−b0 − 1.9411 b1 − 3.7680 b2 − 7.3140 b3 = −23.278,

−b0 − (5.0549 + 3.7554 i) b1 − (11.450 + 37.966 i) b2+

+(84.698− 234.92 i) b3 = 146.83− 515.31 i. (27)

System of equations (27) has the unique solution b0 = 1.0000, b1 = 2.0000, b2 = 1.0000,
b3 = 2.0000. Consequently, b(λ) = 1 + 2λ+ λ2 + 2λ3 and problem L is following:

ly = −y′′ + 2 (π + x) sinx+ 4 (1 + cosx)

(π + x+ sinx)2
y = λ y = s2 y,

2

π
y(0) + y′(0) = 0, (1 + 2λ+ λ2 + 2λ3) y(0) +

1

8π
y(π) +

(
λ− 1

4

)
y′(π) = 0.

Example 4. Suppose a(λ) = a2 λ
2 + a3 λ

3, b(λ) = b0 + b1 λ and the eigenvalues of
problem L are the following:

λ1 = 0.29110; λ2 = 0.66347; λ3 = 2.7751; λ4 = 7.6014− 2.2275 i;

λ5 = 7.6014 + 2.2275 i; λ6 = 10.666− 50.994 i; λ7 = 10.666− 50.994 i.

Then the system of equations (25) has the following form

−x1 − 0.29109x2 + 0.0034822x3 + 0.0010137x4−

−1.3315x5 − 0.38759x6 − 0.11283x7 = −10.341,

−x1 − 0.66348x2 + 0.18201x3 + 0.12076x4−

−4.8617x5 − 3.2256x6 − 2.1401x7 = −65.260,

−x1 − 2.7751x2 + 19.447x3 + 53.968x4 − 2.4411x5 − 6.7743x6 − 18.800x7 = 42.199,
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−x1 + (−7.6013 + 2.2275 i)x2 + (312.85− 366.61 i)x3 + (1561.5− 3483.7 i)x4+

+(−23.986 + 16.072 i)x5 + (−146.52 + 175.60 i)x6+

+(−722.61 + 1661.2 i)x7 = −149.57 + 63.846 i,

−x1 + (−7.6013− 2.2275 i)x2 + (312.85 + 366.61 i)x3 + (1561.5 + 3483.7 i)x4+

+(−23.986− 16.072 i)x5 + (−146.52− 175.60 i)x6+

+(−722.61− 1661.2 i)x7 = −149.57− 63.846 i,

−x1 + (−10.666 + 50.994i)x2 + (−81374 + 11547 · 10i)x3 + (5.0204 + 5.3812i) · 106 x4+

+(−30020 + 48413 i)x5 + (2.1485 + 2.0472 i) · 106 x6+

+(12.731− 8.7729 i) · 107 x7 = (1.0597− 0.65934 i) · 109,

−x1 + (−10.666− 50.994 i)x2 + (−81374− 11547 · 10 i)x3+

+(5.0204− 5.3812 i) · 106 x4+

+(−30020− 48413 i)x5 + (2.1485− 2.0472 i) · 106 x6+

+(12.731 + 8.7729 i) · 107 x7 = (1.0597 + 0.65934 i) · 109.

This system of equations has the unique solution x1 = 1.0000, x2 = 2.0000, x3 = 3.0000,
x4 = 4.0000, x5 = 3.0000, x6 = 10.0000, x7 = 8.0000. Consequently, a(λ) = 3λ2 + 4λ3,
b(λ) = 1 + 2λ and problem L is following:

ly = −y′′ + 2 (π + x) sinx+ 4 (1 + cosx)

(π + x+ sinx)2
y = λ y = s2 y,

2

π
y(0) + y′(0) + (3λ2 + 4λ3)y(π) = 0, (1 + 2λ)y(0) +

1

8π
y(π) +

(
λ− 1

4

)
y′(π) = 0.
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