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STUDYING THE SOLUTION OF THE SYSTEM OF
DIFFERENTIAL EQUATIONS OBTAINED IN
SIMULATION OF GAS-LIFT PROCESS BY THE
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Abstract. Using the relation method for the system of first order, two-dimensional hy-
perbolic type partial differential equations describing the motion of gas liquid gas mizture
corresponding to gas-lift process of oil production in an annular and lifting pipe, we con-
sider a boundary condition problem. In this problem the existence a boundary condition
problem. In this problem the existence of the solution with respect to the equations of
motion is studied and it is shown that when constructing the solution of this problem by
means of boundary conditions, it is impossible to determine the coefficients of positive
degrees of the parameter . For this reason, the solution is sought in the form of a series
using negative degrees of the parameter €.
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1. Introduction

As is known [9] the first method for operation of oil-wells is the fountain method. This
time oil rises to the surface due to internal energy of the layer. After some period, the
layers energy decreases and gas production stops. As the end of the fountain method, for
restoring this method a compressed gas is injected to the well [3], [13]. The gas lightness
the oil in the layer and a result the oil emerges to surface. The installations that work
using such natural gas are called gas-lifts. One of the important stages of oil production
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is the gas-lift method. Various mathematical models describing the motion in gas-lift
process were worked out [1], [2], [8] and different problems were stated by their means,
for example maximum oil recovery by injecting minimum gas [4], [5], determination of the
hydraulic resistance factor and so in [7]-[9]. In the paper we consider the case when the
equations of motion contain a small parameter, and this small parameter is the inverse
value of the well depth. The existence of the solution with respect to the equations of
motion is studied [11], [12] and it is shown that when building the solution of this problem
by means of boundary conditions it is impossible to determine the coefficient of positive
degrees of the parameter . For this reason, the solution is sought in the form of a series
using the negative degrees of the parameter e [10].

2. Problem Statement and Basic Results

It is known that [1], [6], [8], during the gas-lift process the system of hyperbolic partial
differential equations characterizing the motion of liquid-gas mixture in the gas and lifting
pipe in annular space is as follows:

OP; (x,t) ez 0Q; (x,t)

ol Tordh oo e »
i(x,t _ i (Tt N .
T = FZ Oz 20,74@1 ("L’,t)7 t> 07 x € (0,21) .

Here P; (x,t)-is gas pressure injected to the well (liquid-gas mixture in na lifting pipe),

Q; (x,t) is gas volume, ¢; is sound speed, [ is well depth, the parameter a; is found by

means of the expression 2a; = 9 + % In this expression A is hydraulic resistance
w

factor, g is free fall acceleration, D is an effective diameter of the annular space and of

the hoist. This indices 1 and 2 are the parameters describing the motion in the annular
space and lifting pipe, respectively [3], [6].

If we want to solve the system of equations (1) by applying the straightline method and
determine the volume and pressure of liquid-gas mixture at each point, this time the um-
ber of equations in the system of differential equations will be too large and this will cause
serious errors in computer calculation. Therefore, introducing the parametercaccording
to the relaxation method, we consider the solution of the problem.

Le. in the system (1) to the inverse value of the well depth as a gas small parameter

we make the substation € = 2 and z = % = ez [11]. As a result from the system (1) we
get the system of equations:
0P (z,t,e) _i 0Q; (z,t, 5)5
5 ot B op 0z ’ (2)
i (2,1, i (251,
% = —Fi%s —2a;Q; (z,t,€).

We study the solution of the obtained system of equations (2) within the following bound-
ary condition [2], [3], [12]:
P(0,t,e) = P%(t,e
Q (Ovtvg) = QO (tvE

)
)
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Expand the functions P (¢,¢) and Q° (¢,¢) is series of e—:
PO(t,e) = 3 Pu(t)eh,
k=0
Qte) = 3 Qi(t)er
k=0
As in the system (3) we write the expansion of the system of equations by e:

Pi(zt,e) = Y- Pylz,t)ek
= (4)
Qi(z,t,e) = kX_:O Qk(z, t)ek

And now take the system (4) into account in the system of equations (2) :

2

Z oP;, k:(z ek 4 & Z 3Qigz(z-,t) g+l — 0,

k=0 k=0 - (5)
z§9%¥2k+ﬁ’zé”*@”k“+aaz:@xQka=a
k=0 = k=0

Write the expressions of the degrees of the coefficient ¢ of the obtained system (5) in
descending order [10], [12]:

AP; o(z,t) 0 OP; _1(z,t) 1 OP; _2(z,t) _2 OP; _3(z,t) _3
ot ¢ T o ¢ T ot + ot ot

+< 00z t) o | 9Qia(zt) 0 4 0Q 72<z B —1 4 9Qs, 73(z -2 4 ) —0,
aQi,gt(z’t) 0 4 aQi,éi(z’t)efl + 0Q;, 5:(2 t)572 + 0Q;, Bi(z t)€73 I (6)

+F, 6Pi,gz(zat)5 + 3137:,52(2775)80 + 3131‘,52(2:75)8—1 + 3Pi,5z(zyt)€—2 + )+

2a (Qi,o(znf)so +Qi—1(z,)e™  + Qi —a(2,0)e™2 + Qi —3(2,t)e 3 + ) =0.

Writing appropriate solution to the coefficient ! —we obtain:

0 7 >t ~
%2) =0, N Qio(z,1) = Qio(t), (7)
Pz t) _ Pro(t) = Pot)

0z ’

Writing appropriate solution to the coefficient €®—we obtain:

8Pi,0(z,t) 62 8Qi7_1 (Z,t)

=0
0ot ror e,
i,0(%, 1 i, —1(2,1
5 ) 2 . . =
ot + 92 + ale,O(za t) 07
i—1(z,t P _1(z,t) . .
here we determine the derivatives 0@, 61(2 ) and op, 81(2 ) integrate with respect to
z z
z and get:
0Q; —1(2,1) Fi o
T = _72Pi/,0 (t)v
z c; -
OP; _1(z,t) 1 ~ 2a;

P =R 2,0()* on()v
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. F o
Qi—1(2,t) = Qi —1(t) — 5P/, (t)z,
= G (8)
- 1, 2a; -~
Pima(znt) = Pioalt) = (FQho(t) + 5 @uo(t)) =
Writing the term corresponding to the coefficient ¢ ~!—we obtain:
0Qi—2 (2,1) _ FiOP;_1(21)
8PZ-,,2 (Z,t) . _i BQi,,l (Z,t) . QGZQ (Z t)
0z a F; ot F; Lol R
i,— , T P; _ , T
Determining the system (8), i.e. Q. alt(z ) and ok, 8115(2 ) from (8) and take then
into account in (9):
6@1",2(2,15) Fi ~ 1 ~ 2@1‘ ~
—, = a2l + Q1) 2+ —5 Qi) (10)
6Pi’,2(z,t) ].Z ~ f ~ 2(]:, ~ FZ ~
9 o)+ gpi/,/o(t) z— 7. Qi,—1(t) — C*?Pico(t)z .
Integrating the obtained expression(10) with respect to z—we obtain:
F; -~ 1~ 22 2a; ~ 22
Qi—2(2,t) = —EP{,A (t) 2+ gQél,o (t) §+g io(®) 5t Qi—2(t),
1 ~ 1 - 22 . 2a; ~ 2a; ~ 22
P (Zat):—EQé,q (t) Z+E‘Pil,/0 (t) §+Pi,f2 (t)—?iQi,q (t) 2+ gpi/,o (t) >

(11)

Grouping the terms of =2 —according to the above rule by equating their coefficient zero,

we obtain:
6,PZ ,2(27 t) 612 8@2 ,3(2’, t)
s + o 5 — O7
00 5(t) 0P, (et ()
1,—2 Z7t i,—3\ %, t
: F,— 2a;Q; —2(z,t) = 0.
ot + 0z +20iQi-2(21)
Now determine the derivative of the expression (11) with respect to t:
OP; _a2(z,t) 1 - 1 - 22 - 2a; ~ 2a; -~ 22
1T:—E_Q§/,f1(t)z+gpf,%(t)§ + P _5(t) - ?;Q/i,—l(t)z + ?;P”i,o(t)?7
8Qi7_2(z,t) Fl ~ 1 - 2’2 2az~ ~ 1 2’2 ~
— % —CT_QPZ",/q(t)Z + 2 0o (t)g + gQi,o(t) 5 + Q' _o(1).
(13)
Take expression (13) into account in (12):
0Q; —3(z,t) 1 ~ F; - 2?2 F; - 2a; ~ 2a; F; ~ 22
T:CTQ;/,—I(t)Z_CjPi/,/(/)(t)E_072‘131,,—2(1;)—’_ 2 Q; _1(t)z — A i/,lo(t)ga
OP; _3(z,t) 1 - 1 2 2y ., 2% 1 '
) o pr £) 2 — 1" ~ "o ’ ¢
az C2 i,—1 ( )Z cmlz QI,O( ) 2 FCQ 3,0 ( ) 2 F 17—2( )+
2a; 2a; 22 4a? 22 2a; ~
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Finally, integrating the expression (14) with respect to the variablezwe obtain:

1 - 22 F; ~ 23 I - 2a ~ 22
Qi,—3(z,1) = ché’,q(t)? - CTIP{,/{)(t) 5 C%P{,fz(t) z+ ?Qg,fl(t) 5
' ' 20,;1‘71 ~ Z? ’ ~
R P (t)g + Qi,—3(t),
2 23 2a; 23 1 ~

PP () g~ @ )~ maQe 0 — FQoa

’ c
2a; ~ 25 2a; =~ z 4a? -~ 25 2a; ~ ~
P (8) 2 — LY () — =L@ () — 2220, _o(t P; _5(t).
-+ C? s l( ) ) C,L2FZ 2,0 ( ) 6 Fic? Qz,O( ) 6 Fi Q7 2( )Z + s 3( )

In this way, similarly we can determine P, _j, (2,t) and Q; —r (2,t).

Now we give an algorithm for constructing the recurrent formula determining the
parameters P; _i(z,t) and Q; _x(z,t) for any term of the series. Writing the expressions
obtained from the coefficients of e ¥+ in the system (5) by means of the matrices in the
following from:

F;

O (Qi—r) _ 0 2| 9 (Qi—kn n gai 0 Qi,— k1
0z \ Pi—x 1 ot \ Pi—k+1 — 0 P k1)
- 0 F;
_b
. . Qi—k\ _ | _
Here making the substatituons as p = W_g, 1 i = A and
i,—k
' —— 0
i
0 0
_ 2a; ol = B and integrating the obtained expressions with respect to z- we get:
F;
~ = oOW_ ,t #
Woaeot) = W)+ 4 [ PN e e nde 0s)
0 0

Hence by substituting k-with (k-1) and finding W_1(z,t)- and taking it into account
in this equation we can write the equation (15) in the following form and obtain:

82 z z
Wo(et) = 425 [ Worsatnopdn [ det
0 n
a z z z z
+(AB—|—BA)&/ W,k+2(n,t)dn/ df—i—Bz/ W,k+2(n,t)d7]/ dg. (16)
0 n 0 n

Here taking into account
X1 = Wop(t) + AW, () 2+ BW 414 (t) 2,
and changing the order of the integral in the expression (16) for the expression, (15) we

obtain the following formula corresponding to the first iteration.

2

8 V4
W_k(z,t) = x1 + AQ@/O (2 =) W_gra(n, t)dn+
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a z z
+(AB + BA) o / (z=n) W_gya(n, t)dn + BQ/ (z =n) Wepga(n, t)dn. — (17)
0
Now, for determining W_j2(2,t) corresponding to the second iteration, in the ex-
pression (15) instead of k-take —k 4+ 2 and obtain:

~ n n
Worsalnt) = Worsal) + 4 [ 20280 0c 4 5 [T ode

Taking this obtained expression into account in (17) and making some simplifications,

we get:

217

(z—n)

Woi(z,8) = xa + AW _a(1) (-1) ~—;

_|_

—|—A3%/ W_k+3§td§/ z—n dn+A2B6t2/ W_k+3ftd§/ zZ—=n dTH—

(z—n)?

+(AB+ BA) W' _j4a(t)(—1) Y

n=0

9% [F ?
+(AB+BA)A@/O W—k+3(€,t)d£/ (z—mn)dn+

+(AB+BA) B /W_k+3§td§/ z—n)dn+

(z—n)?|"
21

LB (t)(—1) BQAat/ W_k+3£td§/ 2 —n)dn+

n=0

LB /0 W ipa(€.8)dE /E (z — ) dn.

We get this expression by calculating the interior integral as in expression (16):

Z2 ~ ZQ ~
W_i(z,t) = x1+ A2 W” k+2(t) + (AB 4+ BA) ?W/_k+2(t) + Bzgw_k_;,_z(t)Jr

5 [F (=82 PW_ii5(E,1) ) 2 OPW_ gy 3(E, 1)
A /0 2! ot de+4 B/ ot e

PPW_43(6,t)
ot?

2OW _pys(€,1)
ot

+ (AB+BA) A / (z ;5) dé+
o 2

+(AB+ BA)B / e ;f) g+
, 2

2 ow_ Z(z— &)
B4 / L1al6:0 ge 4 /0 Co W na ()
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After making some groupping, we can write the expression (18) as follows:

- - ~ 2
W_r(z,t) = x1 + [A?Wff_k+2(t) F(AB + BAYW/_jia(t) + B*W_jia(t) %+

1 z 2 2+n
2 nnpl-n (Z - 6) 0 W—k+3 (fa t)
+A Z: A"B /0 o e dé+

1 2
woin [ (2= P OWa(E
t(AB+BA) ) AB! /O : 21) am'ﬁf( i+

1 z 2 2 2
2 nple (2= &) 0"W_r13(&,1) z 0 ~
‘B = (A +B) W-
+B ;A B /0 21 otn d§ = x1 + 5 ot + W k+2(t)+

’ (Z — 6) o 'S 9 " 1-n
+/o 2! (Aat + B) nZ:o (A@t) B "W _py3(&,t)dE.

Containing the calculating in the expression (15) we substitute —k—with —k + 3— and
writing in the expression (18) we obtain:

W_i(z,t) = x1 + X2+

z 3 | oW 3
+A3/0 %a [W—k+3()+A/O wdn+3/o W_kta(n, t)dn | ds+

ot3 ot

azp [ B8 07 d
+ / atg €+

Z(Z_ 62
+(AB+BA)A/0 T

- S ow_ Jt
Woes(t )+A/ kg:(n )
0

¢
dn + B/ W_ra(n, t)dn
0

S OW_jqa(n,t)
ot

dn+

W_jra(t +A/

(-6 0
2! 8t

€ z
4B [ Wepsan,t)dn| dé -+ (B + BAB | (W_ist)+
0 0

&
+A/ 6W—k+4 W-rsalnt) +B/ W_pra(n. t)d

z 2 13 3

— 0 oWw_ ,t

+BZA/ (= 2,6) En [W k+3(t )+A/ %dn—kB/ W_kta(n,t)dn
0 : 0 0

s 2 3 £
e [Wk+3(t)+A [Py | Wk+4(n7t)dn1 a, (19)
0 0 0

dé+

de+

2! ot
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2 o 2 ~
here xo = % (Aat + B) W_k12(t). Changing the order of the integral in the obtained
expression (19) and making simplifications we get:

B 3 z2 ()3 94
" (t) % + A4/ (Z 77) 0 W7k+4 (nat) dﬂ+
: 0

_ 3
W_p(z,t) = x1+ x2 + AW} 3 30 P

3! ot3 3!

3
(2= )P W s (1,1)
A2 BA (Z 77) k+4 ",
* /0 3! ot

z —.\3 93 5 3
JrAsB/O (z—m)° 0 W—k+4(777t)dn+A2B " (8) Z 4

dn+

3
“(z—n) W N . 3
+AB? /O (2 3!”) . 1) 4 4 (AB + BA) AW, (t)%—k

z=n)° PW_rya (n,1)
3! ot3

z—1)° *W_gya (n,1)
3! ot

2 =) PW_sa (1)
3! ot

z 3'1]) aW—kggl (777 t) dn + BZAWL]ﬁ_?, (t) i+

3!
z 3 02
942 [T (z=m) 0O°W_j14(n,t)
B4 /0 31 o

+ (AB + BA) A? / ( dn+
0

+(AB + BA) AB / ( dn+
0

3

+(AB + BA)BW' 5 (t) % + (AB + BA) BA / (
: 0

dn+

+(AB+BA)BQ/Z(
0

dn+

3
F(z—mn)” OW_ 1 . 3
+B2AB/O (z 3!") o UL gy 4 B3y 1) 5+

3 3

z _ OW_ ,t z _

+B*A / ¢ 3'”) d o 1) g 4 / ) 3,’7) Wogsa (n.t)dn.  (20)
0 : 0 :

Making some groupping in the expression (20) we can write it in the following form:

23
—+

W_i (2,t) = x1 + x2 + a0

o :
(Aat + B) W_k13(t)

+

n=0

/Oz (2 3!77)3 <A§t + B) 3 21: (A(i)n B "Wy a(n, t)] dn. (21)

Note that by this rule we can determine any step of the iteration. Based on the obtained
expressions (21), (19) and (16) we can write the general recurrent formula as follows:

W_ (2,t) = /0 (= kf)k (Agt + B>k 21: (Agt)n BY"W (€, 1) dE+

n=0
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