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Abstract. An elastic medium is considered, weakened by a doubly periodic system of
round holes, filled with absolutely rigid inclusions, soldered along the bypass and has a
crack initiation. The medium (binder) is weakened by two periodic systems of rectilinear
crack initiation directed collinear to the abscissa and ordinate axes, and their sizes are not
the same. General representations are constructed that describe a class of problems with
a doubly periodic stress distribution outside circular holes and cracks under transverse
shear. The analysis of the limiting equilibrium of cracks in the framework of the end zone
model is carried out on the basis of a nonlocal fracture criterion with a force condition
for the propagation of the crack tip and a deformation condition for determining the
advancement of the edge of the end zone of the crack.

Basic resolving equations are obtained in the form of infinite algebraic systems and
three nonlinear singular integro-differential equations.

The equations in each approximation were solved by the Gaussian method with the
choice of the principal element for different values of the order of M , depending on
the radius of the holes. Calculations were carried out to determine the forces in the
connections of the end zones and the ultimate loads causing the growth of cracks.
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126 Transverse shear of an isotropic elastic medium

1. Introduction

Currently, in many branches of modern technology, technical means are used in the
form of perforated elements. In this regard, the development of methods for calculating
the strength of perforated elements of machines and structures with cracks is of great
importance. The study of these issues is important in connection with the development of
energy, the chemical industry and other branches of technology, as well as the widespread
use of materials with a periodic structure (composites).

A model of crack initiation in composites with a doubly periodic structure, based on
the consideration of the zone of the crack formation process, is proposed.

It is believed that the zone of the fracturing process is a layer of finite length contain-
ing material with partially broken bonds between individual structural elements. The
presence of bonds between the shores of the pre-fracture zone (the zone of weakened
inter-partial bonds of the material) is modeled by the application of adhesion forces
caused by the presence of bonds to the surface of the pre-fracture zone. The analysis of
the limiting equilibrium of the prefracture zone during transverse shear is performed on
the basis of the criterion of the limiting shear of the material bonds and includes:

1) establishing the dependence of the adhesion forces on the shear of the prefracture
zone banks;

2) assessment of the stress state near the pre-fracture zone, taking into account external
loads and adhesion forces, as well as the location of rigid inclusions;

3) determination of the dependence of critical external loads on the geometric parameters
of the composite medium at which a crack appears.

2. Formulation of the Problem

An elastic plane D is considered, weakened by a doubly periodic system of circular holes
with radii λ (λ < 1) and the centers of these holes are at the points

Pmn = mω1 + nω2 (m,n = 0,±1,±2, ...) ,

ω1 = 2, ω2 = ω1he
iα, h > 0, Imω2 > 0.

Elastic washers made of a different material are soldered into the circular holes with-
out interference. The plane under consideration is subjected to transverse shear by forces
D (Fig. 1). As the external load increases in such a plane, zones of increased stresses
are formed around the holes, the arrangement of which has a double periodic charac-
ter. Cracks can occur in areas of increased stress. The problem of crack initiation is an
important problem in damage mechanics.

The statement of this problem significantly expands the original concept of A. Grif-
fiths, according to which a material always contains a large number of the smallest cracks.
The formation (nucleation) of a crack under load corresponds to the data of fractographic
observations. As the intensity of the external load increases, pre-fracture zones appear
near the holes, which are modeled by areas with weakened interparticle bonds in the
material. The interaction of the shores of these zones is modeled by introducing bonds
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between the shores of the pre-fracture zone with a given deformation diagram. The phys-
ical nature of such bonds and the size of the pre-fracture zones depend on the type of
material. Since the indicated zones (interlayers of overstressed material) are small com-
pared to the rest of the isotropic medium, weakened by a doubly periodic system of
circular holes, they can be mentally removed by replacing them with cuts, the surfaces
of which interact with each other according to a certain law corresponding to the action
of the removed material.

Fiq. 1. Calculation scheme for the problem of crack initiation

Taking these effects into account in problems of fracture mechanics is an important
but very difficult problem [1].

In the case under study, the emergence of an incipient crack in a medium weakened
by a doubly periodic system of circular holes is a process of transition of the pre-fracture
region into the region of broken bonds between the surfaces of the material. In this case,
the size of the pre-destruction zone is not known in advance and must be determined.

Studies [2], [3], [11], [20]-[22] of the appearance of regions with a damaged material
structure show that in the initial stage, the pre – fracture zones are a narrow – elongated
layer, and then, with an increase in the load, a secondary system of zones containing
material with partially broken bonds.
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For a mathematical description of crack initiation in an isotropic medium weakened
by a doubly periodic system of circular holes filled with rigid inclusions in the case under
consideration, we come to the problem of the theory of elasticity for a medium when the
medium contains pre–fracture zones. The pre–fracture zones are oriented in the direction
of the maximum shear stresses. It is believed that in an isotropic medium there are two
periodic systems of rectilinear pre–fracture zones collinear to the abscissa and ordinate
axes (Fig. 1) of unequal length. The interaction of the banks of the pre–fracture zone
(bonds between the banks) inhibits crack initiation. For a mathematical description of the
interaction of the banks of the pre-fracture zone, it is assumed that there are connections
between them, the deformation law of which is given.

Modeling the tip regions of cracks consists in considering them as part of the cracks
and explicitly applying to the surfaces of the cracks in the tip zones of the adhesion
forces that restrain their shear. The sizes of the end zones of the cracks are considered
commensurate in comparison with the length of the cracks. The interaction of the edges
of the end zones of cracks is modeled by introducing bonds with a given deformation
diagram between the edges of the pre-fracture zone. The physical nature of such bonds
and the size of the pre-fracture zones depend on the type of material. Under the action of
an external load on a composite body in the bonds connecting the banks of the pre-failure
zones, tangential forces qx (x), qy (y) in the plane and q0x (x) in the inclusion, respectively,
arise. These stresses are unknown in advance and must be determined from the solution of
the boundary value problem of fracture mechanics according to the boundary conditions
expressing the absence of elastic displacements along the bypass of the circular holes and
the conditions on the banks of the pre-fracture zones, respectively [5].

The boundary conditions in the problem under consideration have the form

(σr − iτrθ) b|Ωm
= (σr − iτrθ) s b|Ωm

,

(u+ iυ) b|Ωm
= (u+ iυ) s|Ωm

,
(1)

on the banks of cracks with end zones

(σy − iτxy)s = fx (x) collinear abscissa,

(σx − iτxy)s = fy (y) collinear y − axis, (2)

(σx − iτxy)b = f0
x (x) at, y = 0, |x| ≤ ℓ.

Here Ωm is the inclusion-plane interface in the cell with the number m; the values
relating to the inclusion (washer) and the plane are hereinafter designated by the sub-
scripts b and s; fx (x) = 0 on free banks of cracks; fx (x) = −iqx (x) on the banks of
the end zones of cracks collinear to the abscissa axis; fy (y) on the free shores of cracks
collinear with the ordinate fy (y) = −iqy (y) on the shores of the end zones of the cracks
collinear with the ordinate; f0

x (x) = 0 on the free banks of the crack in the inclusion;
f0
x (x) = −iq0x (x) on the banks of the end zones of cracks in the inclusion [10].

The main relations of the problem posed must be supplemented with relations con-
necting the displacement of the banks of the zones before the destruction and the tan-
gential forces in the bonds.
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Without loss of generality, we represent these relations in the form

u+s (x, 0)− u−s (x, 0) = C (x, qx(x)) qx(x)

for end zones of cracks collinear to the abscissa axis, (3)

υ+s (0, y)− υ−s (0, y) = C (y, qy(y)) qy(y)

for end zones of cracks collinear with the ordinate axis,

u+b (x, 0)− u−b (x, 0) = C0

(

x, q0x(x)
)

q0x(x) (4)

for end zones of cracks in the inclusion,

where functions C (x, qx(x)) and C (y, qy(y)) represent effective bond compliance;
(u+s − u−s ) is the shift of the banks of the pre-fracture zones of the collinear abscissa
axis; (υ+s − υ−s ) is the shift of the banks of the pre-fracture zones of the collinear y−axis;
(

u+b − u−b
)

is the displacement of the edges of the end zones of the crack in the inclusion.
To determine the limiting value of the external load at which the crack nucleation

occurs, the problem statement must be supplemented with the condition (criterion) for
the appearance of a crack (rupture of inter-partial bonds in the material). As such a
condition, we take the criterion of the critical shear of the banks of the pre-fracture zone

u+s − u−s = δIIc on L1,

υ+s − υ−s = δIIc on L2, (5)

υ+b − υ−b = δIIc at y = 0, |x| ≤ ℓ,

where δIIc is the characteristic of the resistance of the medium material to cracking; L1

is a set of pre–fracture zones collinear to the abscissa axis; L2 is a set of pre–fracture
zones collinear to the ordinate axis; L3 is set of pre-destruction zones, including [6], [7].

3. Method for Solving the Problem

To solve the problem, the method developed in solving the doubly periodic elastic problem
[4] is naturally combined with the method [21] for constructing in explicit form the
Kolosov–Muskhelishvili potentials corresponding to unknown tangential displacements
along the pre-fracture zones.

Stresses and displacements in the flat theory of elasticity can be represented [18], [20]
through two analytical functions of a complex variable z = x + iy, Φ(z) and Ψ(z) using
the Kolosov–Muskhelishvili formulas:

σy + σx = σr + σθ = 2
[

Φ (z) + Φ (z)
]

,

σy − σx + 2iτxy = e−2iθ (σθ − σr + 2iτrθ) = 2 [z̄Φ′ (z) + Ψ (z)] , (6)

2µ (u+ iυ) =: ϕ (z)− zΦ (z)− ψ (z),

ϕ′ (z) = Φ (z) , ψ′ (z) = Ψ (z) ,
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where µ is the shear modulus of the material; ν is Poisson’s coefficient; k = 3 − 4v for
plane deformation; k = (3− v) / (1 + v) for a plane stress state; r, θ is polar coordinates.

We represent the stresses and displacements in terms of the Kolosov–Muskhelishvili
potentials Φ(z) and Ψ(z) (6). Based on formulas (6) and boundary conditions on the
contours of circular holes (1) and pre-fracture zones (2), the problem is reduced to deter-
mining two analytic functions Φ(z) and Ψ(z) in the domain D from the boundary con-
ditions (t, t1 and t0 are the affixes of the bank points of the pre-fracture zones collinear
to the abscissa and ordinate axes, respectively) [17]

Φ (τ) + Φ (τ)− [τ̄Φ′ (τ) + Ψ (τ)] e2iθ = Φ0 (τ) + Φ0 (τ) − [τ̄Φ′
0 (τ) + Ψ0 (τ)] e

2iθ, (7)

−ksΦ (τ) + Φ (τ)− [τ̄Φ′ (τ) + Ψ (τ)] e2iθ =

=
µs

µb

{

−kbΦ0 (τ) + Φ0 (τ)− [τ̄Φ′
0 (τ) + Ψ0 (τ)] e

2iθ
}

, (8)

Φ0 (t0) + Φ0 (t0) + t0Φ′
0 (t0) + Ψ0 (t0) = f0

x (t0) , (9)

Φ (t) + Φ (t) + tΦ′ (t) + Ψ (t) = fx(t),

Φ (t1) + Φ (t1) + t1Φ′ (t1) + Ψ (t1) = fy (t1) ,

(10)

where τ = λeiθ +mω1+nω2, m, n = 0± 1,±2, ..., µs, ks and µb, kb are shear moduli and
Muskhelishvili constant for the plane and inclusion, respectively [9].

4. Solution of the Boundary Value Problem

The solution to the boundary value problem (7)–(10) is sought in the form [12]

Φ0(z) = Φ01(z) + Φ02(z), Ψ0(z) = Ψ01(z) + Ψ02(z),

Φ01 (z) =
1

2πi

∫ ℓ

−ℓ

g0(t0)
t0−z

dt0, Φ02 (z) = i
∑∞

k=0 a2kz
2k,

(11)

Ψ01 (z) =
1

2πi

∫ ℓ

−ℓ

[

g0(t0)

t0 − z
− t0g0(t0)

(t0 − z)2

]

dt0, Ψ02 (z) = i
∞
∑

k=0

b2kz
2k, (12)

Φ(z) = Φ1(z) + Φ2(z) + Φ3(z),

Ψ(z) = Ψ1(z) + Ψ2(z) + Ψ3(z),
(13)

Φ1 (z) = iτ∞xy + iα0 + i
∑∞

k=0 α2k+2
λ2k+2γ(2k)(z)

(2k+1)! ,

Ψ1 (z) = iτ∞xy + i
∑∞

k=0 β2k+2
λ2k+2ρ(2k)(z)

(2k+1)! − i
∑∞

k=0 α2k+2
λ2k+2S(2k+1)(z)

(2k+1)! ,

(14)

Φ2 (z) =
1
2ω

∫

L1
g (t) ctg π

ω
(t− z) dt,

Ψ2 (z) = − πz
2ω2

∫

L1
g (t) sin−2 π

ω
(t− z) dt,

(15)
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Φ3 (z) = − i
2ω

∫

L2
g1 (t1) ctg

π
ω
(it1 − z) dt1,

Ψ3 (z) = − i
2ω

∫

L2

{

g1 (t1) ctg
π
ω
(it1 − z) +

(16)

+
[

ctg
π

ω
(it1 − z) +

π

ω
(2t1 + z) sin2

π

ω
(it1 − z)

]

g1 (t1)
}

dt1,

where

ρ(z) =
(π

ω

)2

sin−2
(π

ω
z
)

− 1

3

(π

ω

)2

,

′
∑

m

[

Pm

(z − Pm)
2 − 2z

Pm

− 1

Pm

]

,

the prime at the sum means that the index m = 0 is excluded during the summation; the
integrals in (15), (16) are taken along the lines L1 = [−ℓ,−a]∪[a, ℓ], L2 = [−r, −b]∪[b, r],
g(t), g1(t1) and g0(t0) are the sought functions characterizing the displacement of the
banks of the zones before the destruction

g(x) = − 2µsi
1+ks

d
dx

[u+s (x, 0)− u−s (x, 0)] ,

g1(y) =
2µs

1+ks

d
dy

[υ+s (0, y)− υ−s (0, y)] ,
(17)

g0(x) = − 2µbi

1 + kb

d

dx

[

u+b (x, 0)− u−b (x, 0)
]

. (18)

Relations (11)–(18) should be supplemented with additional conditions arising from
the physical meaning of the problem

∫ ℓ

−ℓ
g0 (t0) dt0 = 0,

∫ −a

−h
g (t) dt = 0,

∫ h

a
g (t) dt = 0,

∫ −b

−r
g1 (t1) dt1 = 0,

∫ r

b
g1 (t1) dt1 = 0.

(19)

Let us present the dependencies which the coefficients of expressions (11)–(16) must
satisfy.

From the conditions of antisymmetry with respect to the coordinate axes, we find
that

Imα2k = 0, Imβ2k = 0 (k = 1, 2, ...) .

From the condition of the constancy of the principal vector of all forces acting on the
arc connecting two congruent points in D, it follows [22]

α0 =
π2

24
β2λ

2.

It is easy to verify that functions (11)–(16) under condition (19) define a class of
problems with a doubly periodic stress distribution. Unknown functions g (x), g1 (y) and
g0 (x) and constants α2k and β2k must be determined from the boundary conditions (7)
and (10). Due to the fulfillment of the periodicity conditions, the system of boundary con-
ditions (7) is replaced by one functional equation, for example, on the contour τ = λeiθ,
and the system of boundary conditions (9), (10) is replaced by the boundary conditions
on the contours L1 and L2.
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To compose equations for the coefficients α2k, β2k of the functions Φ1(z) and Ψ1(z),
we represent the boundary condition (7), (8) in the form

Φ1 (τ) + Φ1 (τ) − [τ̄Φ′
1 (τ) + Ψ1 (τ)] e

2iθ =

∞
∑

k=−∞

A2ke
2kiθ + ϕ1 (θ) + f1 (θ) , (20)

where
ϕ1 (θ) = −Φ2 (τ)− Φ2 (τ) + [τ̄Φ′

2 (τ) + Ψ2 (τ)] e
2iθ,

f1 (θ) = −Φ3 (τ) − Φ3 (τ) + [τ̄Φ′
3 (τ) + Ψ3 (τ)] e

2iθ, (21)

Φ0 (τ) + Φ0 (τ)− [τ̄Φ′
0 (τ) + Ψ0 (τ)] e

2iθ =

∞
∑

k=−∞

A2ke
2kiθ .

With respect to the functions ϕ1 (θ) and f1 (θ), we will assume that they expand on
|τ | = λ in Fourier series. Due to antisymmetry, these series have the form

ϕ1 (θ) =

∞
∑

k=−∞

C′
2ke

2kiθ, ReC′
2k = 0,

f1 (θ) =
∑∞

k=−∞ C′′
2ke

2kiθ, ReC′′
2k = 0,

C′
2k = 1

2π

∫ 2π

0 ϕ1 (θ) e
−2kiθdθ, k = 0, ±1, ±2, ... ,

(22)

C′′
2k =

1

2π

∫ 2π

0

f1 (θ) e
−2kiθdθ.

Substituting here relations (21) and changing the order of integration, after calculat-
ing the integrals using the theory of residues, we find

C′
2k = − 1

2ω

∫

L1

g(t)ϕ2k(t)dt, C
′′
2k = − 1

2ω

∫

L1

g1(t1)f2k(t1)dt1, (23)

where

ϕ0(t) = (1 + ε) γ(t), ϕ2 (t) = −λ
2

2
γ(2) (t) ,

ϕ2k(t) = − (2k − 1)λ2k

(2k)!
γ(2k)(t) +

λ2k−2

(2k − 3)!
γ(2k−2)(t),

ϕ−2k(t) =
ελ2k

(2k)!
γ(2k)(t), k = 1, 2, ...,

γ (t) = ctg
π

ω
t, f0(it1) =

[

δ(it1)− δ(it1)
] (1 + ε)

2
,

f2(it1) = −λ
2

2
δ(2)(it1) + 2 [δ(it1)− itδ′(it1)] ,

f2k(it1) =
(1− 2k)λ2k

(2k)!
δ(2k)(it1)+

2λ2k−2

(2k − 2)!

[

kδ(2k−2)(it1)− it1δ
(2k−1)(it1)

]

, k = 2, 3, . . . ,
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f−2k(it1) = − ελ2k

(2k)!
δ(2k)(it1), δ (it1) = ctg

π

ω
(it1) , ε = 1, k = 1, 2, ... .

Substituting in the left side of the boundary condition (20) instead of Φ1(z), Φ1(z),
Φ′
1(z) and Ψ1(z) their expansions in Laurent series in the vicinity of z = 0, and in the

right side of (20) Fourier series (22) and comparing the coefficients at the same powers
of eiθ, we obtain two infinite systems algebraic equations for the coefficients α2k and β2k

iα2j+2 =

∞
∑

j=0

iAj,kα2k+2 + bj, j = 0, 1, 2, ..., (24)

where the expression for Aj,k, bj and the constitutive relations for the coefficients β2k
are given in (20) and (21). Moreover, with the difference that in the ratios defining bj
and β2k instead of A′

2k, in this case, M ′
2k should be taken

M ′
0 =M0 − 2iτ∞xy , M ′

2 =M2 + iτ∞xy ,

M ′
2k =M2k, k = 1,±2,±3, ...,

M2k = A2k + C2k, C2k = C′
2k + C′′

2k, k = 0,±1,±2, ... .

Proceeding similarly with the boundary condition (1), after some transformations we
obtain the same system of equations as (24) for α∗

2j+2 at ε = −k, and instead of the
coefficients A′

2k, in this case, A∗
2k:

A∗
0 = (k − 1) iτ∞xy +

(1− k0)µ

2µb

A0 −
(1 + k0)µ

2µ0
B0,

A∗
2 = iτ∞xy + C∗

2 +
µ

µ0
A2, A∗

2k = C∗
2k +

µ

µ0
A2k, k = 2, 3, ...,

A∗
−2k = C∗

−2k − µk0
µ0

A−2k +
(1 + k0)µ

µ0
B−2k, k = 1, 2, ... .

Here C∗
2k(k = 0,±1,±2, ...) are determined from (23) for ε = −ks.

Using the obtained relations and performing some transformations, we obtain formu-
las that determine the coefficients α2k, β2k, A0, A−2k, through the quantities A2k, as
well as an infinite system of linear algebraic equations with respect to A2k:

iα2j+2 =
1− µs/µb

1 + ks
A2j+2, (25)

A−2j =
µb

µb + k0µs

(

C∗
−2j − C−2j

)

− (1 + kb)µs

µb − µskb
B−2j+

+
µb − µs

µb + kbµs

∞
∑

k=0

λ2j+2k+2rj,kA2k+2, A0 =

∞
∑

k=0

e0,kλ
2k+2A2k+2 + ie0 − e1,

e0,k =
1− µs/µb

(1− 2K2λ2) e
r0,k, e0 =

1 + ks
(1 + 2K2λ2) e

,
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e1 =
1

e
C∗

0 − 1 + (ks − 1)K2λ
2

(1− 2K2λ2)
C0 −

(1 + k0)µs

2µbe
B0,

e =
1 + ks

2 (1− 2K2λ2)
− ks − 1

2
+
µs (kb − 1)

2µb

,

iβ2j+2 =
1− µs/µb

1 + ks
[(2j + 3)A2j+2+

+
∞
∑

k=0

(2j + 2k + 3) !gj+k+2λ
2j+2k+4A2k+2

(2j + 2)! (2k + 1)! 22j+2k+4

]

−A−2j−2 − C−2j−2,

A2j+2 =
∞
∑

k=0

Dj,kA2k+2 + Tj, j = 0, 1, 2, . . . , (26)

Dj,k = (2j + 1)λ2j+2k+2Sj,k

/

γ,

Sj,k =
1− µs/µb

1 + ks

(

γj,k +
µb

kbµs

γ∗j,k + dj,k

)

, dj,k =
gj+1gk+1

22j+2k+4
λ2η (µs/µb) ,

η (µs/µb) =

kb−1
kb

· 1
1−(ks−1)K2λ2 − 2

1−2K2λ2

1− (1− 2K2λ2)
[

ks−1
ks+1 − µs

µb

(kb−1)
(ks+1)

] ,

T ∗
0 =

(

1− µb

k0µs

)

iτ∞xy , Tj =
(

T ∗
j + hj +Kj

) /

γ,

h0 =
1 + kb
kb

∞
∑

k=0

gk+2λ
2k+4

22k+4
B−2k−2,

K0 = C2 +
µ0

kbµs

C∗
2 −

∞
∑

k=0

gk+2λ
2k+4

22k+4

(

C2k−2 +
µb

kbµs

C∗
−2k−2

)

,

T ∗
j =

(2j + 1) gj+1λ
2j+2

22j+2
η1 (µs/µb) iτ

∞
xy ,

η1 (µs/µb) =
(1 + µb/kbµs) [(µb/µs) (kb − 1)− (ks − 1)]

1 + (ks − 1)K2λ2 + (µs/2µb) (kb − 1) (1− 2K2λ2)
,

hj =
(2j + 1) gj+1λ

2j+2

22j+2
(1 + kb)

{

1

2kb [1 + (ks − 1)K2λ2]
+

+
µs

2eµb

[

1

1− 2K2λ2
+

1− kb
2kb [1 + (ks − 1)K2λ2]

]}

B0+

+
1+ kb
kb

∞
∑

k=0

(2j + 2k + 3) !gj+k+2λ
2k+2j+4

(2j) ! (2k + 3)! 22j+2k+4
B−2k−2,

Kj =
(2j + 1) gj+1λ

2j+2

22j+2

{

1− (ks − 1)K2λ
2

e

[

1

1− 2K2λ2
+

1− k0
2ks [1 + (ks − 1)K2λ2]

]

−
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−1}C0 −
(2j + 1) gj+1λ

2j+2

22j+2

{

1

(1− 2K2λ2) e
+

1

kb [1 + (ks − 1)K2λ2]
×

×
(

1− kb
2e

+
µs

µb

)}

C∗
0 + C2j+2

µb

kbµs

C∗
2j+2 −

∞
∑

k=0

(2j + 2k + 3) !gj+k+2λ
2j+2k+4

(2j) ! (2k + 3) ! 22j+2k+4
×

×
(

C−2k−2 +
µb

kbµs

C∗
−2k−2

)

,

γ =
(1− µs/µb) (1− ksµb/kbµs)

1 + ks
− 1 + kb

kb
.

Here B2k are defined in (25), C2k− in (23) at ε = 1, C∗
2k− in (23) at ε = −ks, γj,k

and γ∗j,k are defined in (26) at ε = 1 and ε = −ks, respectively.
Now, substituting (13)–(16) into the boundary condition (9), (10) on the crack faces

with end zones, after some transformations we obtain a system of three singular integral
equations for the sought functions g(x), g1(y) and g0(x):

1

ω

∫

L1

g (t) K (t− x) dt+H(x) = fx(x),

K(t− x) = ctg
π

ω
(t− x) ,

H(x) = xΦ′
s(x) + Ψ ′

s(x), Φs(x) = Φ1(x) + Φ3(x), Ψs(x) = Ψ1(x) + Ψ3(x),

− π

ω2

∫

L2

g1 (t) (t− y) sh−2 π

ω
(t− y) dt+N(y) = fy(y), (27)

N(y) = iyΦ′
∗ (iy) + Ψ∗ (iy) + Φ∗ (iy) + Φ∗ (iy),

Φ∗(z) = Φ1(z) + Φ2(z), Ψ∗(z) = Ψ1(z) + Ψ2(z),

Φ∗(z) = Φ1(z) + Φ2(z), Ψ∗(z) = Ψ1(z) + Ψ2(z),

1

π

∫ ℓ

−ℓ

g(t)dt

t− x
+M(x) = −f0(x),

M(x) = xΦ′
01(x) + Ψ02(x).

Systems (25) and (26), together with singular integral equations (27), are the main
resolving equations of the problem, which make it possible to determine the functions
g(x), g1(y) and g0(x) and the coefficients α2k, β2k.
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5. Numerical Solution Technique and Analysis

Using the expansion of the functions ctg π
ω
z, sh−2 π

ω
z in the main strip of periods, as

well as using a change of variables, after some transformations, we reduce the singular
integral equations to the standard form. Using quadrature formulas, we reduce the basic
resolving equations (25)–(27) to a set of two infinite systems of linear algebraic equations
and to two finite algebraic systems with respect to the approximate values P 0

k = g(ηk),
(k = 1, 2, ...,M), R0

v, v = 1, 2, ...,M , S0
v , i = 1, 2, ...,M of the required functions at the

nodal points [15], [16]:

M
∑

v=1

Am,kP
0
k − 1

2
H∗ (ηm) = −iqx (ηm) , k = 1, 2, ...,M − 1, (28)

M
∑

v=1

Bm,vR
0
v +

1

2
N∗ (ηm) = −iqy (ηm) , k = 1, 2, ...,M − 1, (29)

M
∑

k=1

FmiS
0
i +

1

2
H (ηm) = −1

2
q0 (ηm) , k = 1, 2, ...,M − 1, (30)

here

Am,k =
1

2M

[

1

sin θm
ctg

θm + (−1)
|m−v|

θv
2

+B (ηm, τv)

]

,

θm =
2m− 1

2M
π, (m = 1, 2, ...,M) , τm = cos θm, ηm = τm, λ1 =

a

ℓ
,

B (η, τ) = −1− λ21
2

∞
∑

j=0

gj+1

(

ℓ

2

)2j+2

uj0Aj ,

Aj =

[

(2j + 1) +
(2j + 1)(2j)(2j − 1)

1 · 2 · 3

(

u

u0

)

+ . . .+

+
(2j + 1)(2j)(2j − 1) . . . [(2j + 1)− (2j + 1− 1)]

1 · 2 . . . (2j + 1)

(

u

u0

)j
]

,

u =
1− λ21

2
(τ + 1) + λ21, u0 =

1− λ21
2

(η + 1) + λ21,

Bmv =
1

2M

[

1

sin θm
ctg

θm + (−1)
|m−v|

θv
2

+B∗ (ηm, τv)

]

,

B∗ (η, τ) = −1− λ22
2

∞
∑

j=0

(−1)
j
(2j + 1) gj+1

(r

2

)2j+2

uj1A
′
j ,

A′
j =

{

(2j + 1) +
(2j + 1)(2j)(2j − 1)

1 · 2 · 3

(

u1
u2

)

+ . . .+

(

u1
u2

)j
}

,
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u1 =
1− λ22

2
(τ + 1) + λ22, u2 =

1− λ22
2

(η + 1) + λ22, λ2 =
B

r
,

Fm,i =
1

2M

1

sin θm
ctg

θm + (−1)|m−k|θk
2

.

To the resulting system of equations (28)–(30) are added additional equations (19)
written in discrete form

n
∑

k=1

po

k
√

1
2 (1−λ2

1)(τk+1)+λ2
1

= 0,

n
∑

v=1

Ro

v
√

1
2 (1−λ2

2)(τv+1)+λ2
2

= 0.

(31)

The right-hand sides of the obtained algebraic systems (28), (29), and (30) include
unknown values of stresses qx (ηm), qy (ηm), and q0x (ηm) at the nodal points belonging
to the end zones before fracture. Unknown values of stresses in bonds arising on the
banks of pre-failure zones are determined from additional conditions (3)–(4). Using the
obtained solution, relations (3)–(4) can be written in the form

g0(x) = − 2µbi

1 + kb

d

dx

[

C
(

x, q0x(x)
)

q0x(x)
]

,

g(x) = − 2µsi

1 + ks

d

dx
[C (x, qx(x)) qx(x)] , (32)

g1(y) =
2µs

1 + ks

d

dy
[C (y, qy(y)) qy(y)] .

These equations are used to determine the stresses in the bonds. We represent these
equations (32) in the following form

1 + k0
2µ0i

∫ x

ℓ

g0(x)dx = C
(

x, q0x(x)
)

q0x(x), x ∈ (−ℓ, ℓ) ,

1 + k

2µi

∫ x

h

g(x)dx = C (x, qx(x)) qx(x), x ∈ (−l, −a) ∪ (a, l) , (33)

−1 + k

2µ

∫ y

r

g1(y)dy = C (y, qy(y)) qy(x), y ∈ (−r, −b) ∪ (b, r) .

To construct the missing equations, we require the fulfillment of conditions (33) at the
corresponding nodal points belonging to the end zones (l1, l)∪ (a, a1), (r, r1)∪ (b, b1). As
a result, we obtain three algebraic systems for finding the approximate values of q0x (ηm0)
(m0 = 1, 2, . . . ,M0), qx (ηm1) (m1 = 1, 2, . . . ,M1) and qy (ηm2) (m2 = 1, 2, . . . ,M2),
respectively [13], [14]:































C∗
0p

0
0 (η1) = C

(

η1, q
0
x (η1)

)

q0x (η1) ,
C∗

0

(

p00 (η1) + p00 (η2)
)

= C
(

η2, q
0
x (η2)

)

q0x (η2) ,
...................................................................
...................................................................

C∗
0

M0
∑

m0=1

p00 (ηm0) = C
(

ηM0 , q
0
x (ηM0)

)

q0x (ηM0) ,
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





























C∗
1p0 (η1) = C (η1, qx (η1)) qx (η1) ,

C∗
1 (p0 (η1) + p0 (η2)) = C (η2, qx (η2)) qx (η2) ,

...................................................................

...................................................................

C∗
1

M1
∑

m1=1
p0 (ηm1) = C (ηM1 , qx (ηM1)) qx (ηM1) ,































C∗
2R0 (η1) = C (η1, qy (η1)) qy (η1) ,

C∗
2 (R0 (η1) + p0 (η2)) = C (η2, qy (η2)) qy (η2) ,

...................................................................

...................................................................

C∗
2

M2
∑

m2=1
R0 (ηm2) = C (ηM2 , qy (ηM2)) qy (ηM2) .

Here
C∗

0 = (1 + kb)π (ℓ− ℓ1) / (2µbM),

C∗
1 = (1 + ks)π (h− a) / (2µsM),

C∗
2 = −(1 + ks)π (b− r) / (2µsM).

For the closedness of the obtained algebraic equations, five equations are lacking,
which determine the sizes of the end zones of the cracks. Since the solution of the integral
equations is sought in the class of everywhere bounded functions (stresses), it is necessary
to add the conditions for the boundedness of stresses at the ends of the end zones of cracks
to the systems obtained. These conditions are of the form [19]:

M
∑

k=1

(−1)
k
p00kctg

θk
2

= 0,

M
∑

k=1

(−1)
k
p0kctg

θk
2 = 0,

M
∑

k=1

(−1)v+M R0
vtg

θv
2 = 0,

(34)

M
∑

k=1

(−1)
v
R0

vctg
θc
2

= 0.

The resulting systems of equations (25), (26), (28)–(31) completely determine the
solution of the problem. For the numerical implementation of the described method,
calculations were performed. Each of the infinite systems has been truncated to five
equations. In the numerical calculations,M = 30 was assumed, which corresponds to the
division of the integration interval into 30 Chebyshev nodes. Since the sizes of the pre-
fracture zones are unknown, the solving algebraic system of equations (25), (26), (28)–
(31) of the problem is nonlinear even with linear constraints. To solve it, the method
of successive approximations is used, the essence of which is as follows: we solve the
combined algebraic system for some definite values of the sizes of the pre-destruction
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zones with respect to the remaining unknowns. The rest of the unknowns enter the
resolving system in a linear manner. The accepted values of the dimensions of the pre-
fracture zones and the corresponding values of the remaining unknowns will, generally
speaking, not satisfy the conditions for the bounded stresses at the tops of the pre-fracture
zones. Therefore, choosing the values of the sizes of the zones before destruction, we will
repeat the calculations many times until the conditions of bounded stresses (34) are
satisfied with a given accuracy. In the case of a nonlinear law of bond deformation, an
iterative algorithm similar to the method of elastic solutions [11] was used to determine
the tangential forces in the pre-fracture zones.

To determine the limiting state at which the growth of cracks occurs, the condition
of critical shear of the crack faces is used. Using the solution obtained, the conditions
that determine the ultimate external load are the following:

C
(

λ0, q0x(λ
0)
)

q0x(λ) = δ0c ,

C (λ∗, qy(λ∗)) qx(λ∗) = δc, (35)

C
(

λ1∗, qx(λ
1
∗)
)

qy(λ
1
∗) = δc.

where δ0c , and δc− are the characteristics of the crack resistance of the inclusion material
and the binder, respectively; λ0, λ∗ and λ1∗ are the coordinates of the points at the base
of the pre-fracture zones for the inclusion and the binder, respectively.

The analysis of the limiting equilibrium state of a piecewise homogeneous medium, at
which a crack grows, is reduced to a parametric study of the combined algebraic system
and the criterion for crack growth (35) for various laws of bond deformation, elastic
constants of materials, and geometric characteristics of a perforated body.

It is believed that the law of deformation of interparticle bonds in the pre-fracture
zone is linear at (u+ − u−) ≤ u∗ and (υ+ − υ−) ≤ υ∗. The first step in the iterative
counting process is to solve the system of equations for linear elastic constraints. The next
iterations are performed only if the inequality (u+ − u−) > u∗ or (υ

+ − υ−) > υ∗ holds on
a part of the pre-fracture zone. For such iterations, a system of equations is solved in each
approximation for quasi-elastic bonds with a pre-fracture zone changing along the banks
and depending on the magnitude of the forces in the bonds of effective compliance, which
was calculated at the previous calculation step. The calculation of the effective compliance
is carried out similarly to the determination of the secant modulus in the method of
variable parameters of elasticity. The process of successive approximations ends when the
forces along the pre-fracture zone obtained at two successive iterations practically do not
differ. The nonlinear part of the bond deformation curve was approximated by a bilinear
dependence [3], the ascending section of which corresponded to the deformation of the
(0 < (u+ − u−) ≤ u∗) bonds with their maximum bond strength. At (u+ − u−) > u∗, the
deformation law was described by a nonlinear dependence determined by points (u∗, τ∗)
and (δc, τc), and at τc ≥ τ∗ there was an increasing linear dependence (linear hardening
corresponding to the elastoplastic deformation of the bonds).

To determine the ultimate equilibrium state of the medium, at which a crack appears,
we use condition (5). Using the obtained solution, the conditions determining the ultimate
external load were found to be as follows [8]:

C (d, qy(d)) qy(d) = δIIr, C (d∗, qx(d
∗)) qx(d

∗) = δIIr. (36)
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Here x = ±d and x = ±d∗ are the coordinates of the points where the crack is formed,
respectively.

As a result of a numerical calculation, the length of the pre-fracture zones, the forces
in the bonds, and the displacement of the opposite edges of the pre-fracture zones from
the loading parameter τ∞xy were found.

Fig. 2. Dependences of the relative length of the pre-fracture zone
ℓ∗ = (ℓ− a) /λ on the dimensionless value of the external load τ∞xy

/

τ∗ for some
values of the radius of the holes λ = 0, 2÷ 0, 5 (curves 1 - 4)

Calculations were carried out to determine the ultimate loads causing crack growth.
Each of the infinite systems was cut down to five equations, and with the help of one
of them the unknown coefficients β2k were excluded from the remaining equations. The
resulting system in each approximation was solved by the Gauss method. In the calcu-
lations, h was considered constant, equal to h = 0, 90; r − b = 0, 3. In addition, it was
adopted for the binder material v = 0, 32; µ = 2, 5 · 105MPa, and for inclusion material
v0 = 0, 33; µ0 = 4, 6 · 105MPa.

In fig. 2 shows the graphs of the dependence of the relative length of the pre-fracture
zone ℓ∗ = (ℓ− a) /λ on the dimensionless value of the external loading τ∞xy

/

τ∗ for different
values of the radius of the holes (curves 1 - 4): 1 − λ = 0, 2; 2 − λ = 0, 3; 3 − λ = 0, 4;
4− λ = 0, 5.

In fig. 3 shows the dependence of the forces in the bonds qx
/

τ∞xy along the pre-fracture
zone on the dimensionless coordinate x = (ℓ+ a) /2 + x′ (ℓ− a) /2 for different values of
the radius of the holes: λ = 0, 2÷ 0, 5 (curves 1 – 4).

The joint solution of the resolving algebraic system and conditions (36) makes it
possible (for the given characteristics of the material resistance cracks) to determine the
critical value of the external load, the sizes of the pre-fracture zones for the state of
limiting equilibrium at which the crack appears.
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Fig. 3. Dependences of the distribution of shear stresses in the bonds
qx
/

τ∞xyalong the pre-fracture zone for different values of the radius of the
holes: λ = 0, 2÷ 0, 5 (curves 1 - 4)

Fig. 4. Dependence of the critical load τ∗ = τ∞xy\τ∗ on the distance a∗ = a− λ
at λ = 0, 3.

Fig. 5. Dependence of the critical load τ∗a = τ∞xy
/

τ∗ with a change in the
length of the pre-fracture zone ℓ∗ = ℓ− a at λ = 0, 3, a∗ = 0, 05
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On the basis of the obtained numerical results in fig. 4, graphs of the dependence of
the critical load τ∗ = τ∞xy

/

τ∗ on the distance a∗ = a−λ for the pre-fracture zone collinear
to the abscissa axis at λ = 0, 3 are plotted.

In fig. 5 shows the dependence of the critical load τ∗a with a change in the length of
the pre-fracture zone ℓ∗ = ℓ− a for λ = 0, 3, a∗ = 0, 05.

Based on the numerical results, the graphs of the dependence of the critical (ulti-
mate) load τ ℓ∗ = τ∞xy

√
ω
/

KIIc on the crack length in the plane and in the inclusion were
constructed.

In fig. 6. shows the graphs of the dependence of the critical load on the crack length
in the inclusion.

Fig. 6. Dependences of the critical load τ ℓ∗ = τ∞xy
√
ω
/

KIIc on the crack length
in the inclusion

6. Conclusion

The analysis of the limiting equilibrium state of a body with a doubly periodic system of
rigid inclusions and the banks of the pre-fracture zones with bonds between the banks at
transverse shear is reduced to a parametric study of the resolving algebraic system (24),
(25), (27), (28)–(30), (31), (34) and deformation criterion of destruction (36) for different
laws of deformation of interparticle bonds of the material, elastic constants and geometric
characteristics of the perforated body. Directly from the solution of the obtained algebraic
systems, the forces in the bonds and the displacement of the banks of the zones before
destruction are determined. The model of crack initiation with bonds between the faces
makes it possible to study the main regularities of the distribution of forces in the bonds at
various laws of their deformation, to analyze the limiting equilibrium of the medium with
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the pre-fracture zone taking into account the deformation condition of crack initiation,
and to estimate the critical external load and crack resistance of the material.

The relations obtained make it possible to study the limiting equilibrium state of
a medium with a doubly periodic system of circular holes filled with absolutely rigid
inclusions soldered along the bypass, and weakened by rectilinear pre-fracture zones with
bonds between the banks of unequal length collinear to the abscissa and ordinate axes
during transverse shear.
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