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Abstract. In a rectangle we consider a boundary value problem for a second order quasi-
linear elliptic equation degenerating into a parabolic equation construct total asymptotics
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1. Introduction

There are a number of works devoted to the construction of the asympotics of the so-
lution of various boundary value problems for nonlinear elliptic equations with a small
parameter at higher derivatives. Note some of them [1]-[7], [9], [10]. In [1]-[3], [7] input
equations are degenerate into functional ones, or into ordinary differential equations.
Boundary value problems for a quasiliniear elliptic equation degenerating into a hyper-
bolic equation in a rectangular domain, in a curvilinear trapezoid, in a semi-infinite and
finite strip were studied in [4]-[6], [9], [10].

In the present, in D = {(x, y) |0 ≤ x ≤ a, 0 ≤ y ≤ 1} we consider the following
boundary value problem

LεU ≡ −εp

[
∂

∂x

(
∂U

∂x

)P

+
∂

∂y

(
∂U

∂y

)P
]
− ε∆U +

∂U

∂x
− ∂2U

∂y2
+ cU − f(x, y) = 0, (1)
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U |x=0 = U |x=a = 0 (0 ≤ y ≤ 1) , U |y=0 = U |y=1 = 0 (0 ≤ x ≤ 0) , (2)

where ε > 0 is a small parameter, p = 2k + 1, k is an arbitrary natural number,

∆ ≡ ∂2

∂x2
+

∂2

∂y2
, c > 0 is a constant, f(x, y) is a given smooth function.

In this paper our goal is to construct asymptotic expansion of the generalized solution

of problem (1), (2) from the class
◦

W 1
2 (D). When constructing it we follow the M. I.

Vishik and L. A. Lyusternik technique [11]. For constructing the asymptotics we carry
out iterative processes.

2. Main Results

In the first iterative process we will look for the appropriate solution of the equation (1)
in the from

W = W0 + εW1 + ...+ εnWn, (3)

and the functions Wi(x, y), i = 0, 1, ..., n, will be chosen in such a way that

LεW = o
(
εn+1

)
. (4)

Substituting (3) in (4), expanding nonlinear terms in powers of ε and equating the
terms with the same powers of ε, for determiningWi; i = 0, 1, ..., n we obtain the following
recurrently connected equations :

∂Wi

∂x
− ∂2Wi

∂y2
+ aWi = fi(x, y), i = 0, 1, ..., n, (5)

where f0 (x, y) = f (x, y) , fi (x, y) are the known functions dependent on
W0,W1, ...,Wi−1, i = 1, 2, ..., n. For example, the function f1 (x, y) is of the form:
f1 (x, y) = ∆W0.

Equations (5) will be solved under the following boundary conditions:

Wi|x=0 = 0 (0 ≤ y ≤ 1) , Wi|y=0 = Wi|y=1 = 0 (0 ≤ x ≤ a) , i = 0, 1, ..., n. (6)

The following lemma is valid.

Lemma 1. Let f (x, y) ∈ Cn+1,2n+6 (D) and the condition

∂2kf (x, 0)

∂y2k
=

∂2kf (x, 1)

∂y2k
= 0, k = 0, 1, ..., n+ 2, (7)

be fulfilled. Then the solution of problem (5), (6) for i = 0 is contained into the space
Cn+2,2n+4 (D) and satisfies the relation

∂i1+2i2W0 (x, 0)

∂xi1∂y2i2
=

∂i1+2i2W0 (x, 1)

∂xi1∂y2i2
= 0, i1 + i2 ≤ n+ 2. (8)
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Proof. Obviously, the solution of problem (5), (6) for i = 0 can be represented by the
formula

W0 (x, y) =

∞∑
k=1

W̄0k (x, y) , (9)

where by W̄0k (x, y) we denoted the function

W̄0k (x, y) =

[∫ x

0

e−(c+k2π2)(x−τ)fk (τ)

]
sin kπy, (10)

moreover fk (x) = 2
∫ 1

0
f (x, ξ) sin kπξdξ. Taking into account condition (7), we can get

the estimate: ∣∣∣f (i)
k (x)

∣∣∣ ≤ 2Mi,2n+4

k2n+4π2n+4
, i = 0, 1, ..., n+ 1, x ∈ [0, a] , (11)

whereMi,2n+4 = max
(x,y)∈D

∣∣∣∣∂i,2n+4f (x, y)

∂xi∂y2n+4

∣∣∣∣ , i = 0, 1, ..., n+1. Based on (11) from it follows

from (10) that∣∣∣∣∂iW̄0k (x, y)

∂xi1∂yi2

∣∣∣∣ ≤ C

k2n+4−2i1−i2π2n+4−2i1−i2
, C = const, (x, y) ∈ D. (12)

Denoting r = 2n+4−2i1−i2, from (12) we obtain that the number series
∞∑
k=1

1

kr
is majo-

rant for the functional series,
∞∑
k=1

∂iW̄0k (x, y)

∂xi1∂yi2
, obtained by term by term differentiation

of (9). And this number series converges for r ≥ 2, i.e. for 2i1+ i2 ≤ 2n+4. This implies
that W0 belongs to the space Cn+2,2n+4 (D) and that (8) is valid. J

By lemma 1 the function f1(x, y) which is the right hand side of equation (5) for
i = 1 satisfies condition (7) for k = 0, 1, ..., n+ 1. Then by the same lemma the function
W1 which is the solution of problem (5), (6) for i = 1 will satisfy condition (8) for
i1 + i2 ≤ n+1. Continuing this process, we construct all the functions Wi, i = 0, 1, ..., n,
included in the right hand side of (3).

If follows from (3) and (6) that the structured function W satisfies the following
boundary conditions:

W |x=0 = 0 (0 ≤ y ≤ 1) ; W |y=0 = W |y=1 = 0 (0 ≤ x ≤ a) . (13)

This function, generally speaking, does not satisfy the boundary condition from (2) for
x = a.

Therefore we should construct such a boundary layer type function near the boundary
x = a that the obtained sum W + V satisfies the boundary condition

(W + V )|x=a = 0.

Furthermore, when choosing V it is necessary to ensure the fulfillment of the equality

Lε,1 (W + V )− Lε,1W = o
(
εn+1

)
. (14)
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In (14) denotes a Lε,1 new splitting of the operator Lε near the boundary x = a. In order
to write a new splitting of the operator Lε near the boundary x = a, we make a change

of variables: a − x = ετ, y = y. Let us consider the auxiliary function r =
n+1∑
j=0

rj (τ, y),

where rj (τ, y) are some smooth functions. The expansion of Lε (r) in powers of ε in the
coordinates (τ, y) is of the form

Lε,1r ≡ −ε−1

{
∂

∂τ

(
∂r0
∂τ

)2k+1

+
∂2r0
∂τ2

+
∂r0
∂τ

+

+

n+1∑
j=1

εj
[
(2k + 1)

∂

∂τ

((
∂r0
∂τ

)2k
∂rj
∂τ

)
+

∂2rj
∂τ2

+
∂rj
∂τ

+Hj

]
+ o

(
εn+2

)}
, (15)

where Hj (r0, r1, ..., rj−1) are known functions dependent on r0, r1, ..., rj−1 and their first
and second derivatives.

We look for a boundary layer type function V , near the boundary x = a in the form

V = V0 (τ, y) + εV1 (τ, y) + ...+ εn+1Vn+1 (τ, y) . (16)

Expanding each function Wi (a− ετ, y) at the point (a, y) by the Taylor formula, we get
a new expansion of the function W in powers of ε in the coordinates (τ, y) in the form

W =

n+1∑
j=0

εjωj (τ, y) + o
(
εn+2

)
. (17)

Here ω0 = ω0 (a, y) is independent of τ , and the rest of the functions are determined by

the formula ωk =
∑

i+j=k

(−1)
i ∂

iWj (a, y)

∂xi
τ i, k = 1, 2, ..., n+ 1.

Substituting the expressions (16), (17) for the functions V, W in (14) and taking into
account (15), we get the following equations for determining the functions V0, V1, ..., Vn+1:

∂

∂τ

(
∂V0

∂τ

)2k+1

+
∂2V0

∂τ2
+

∂V0

∂τ
= 0, (18)

(2k + 1)
∂

∂τ

[(
∂V0

∂τ

)2k
∂Vj

∂τ

]
+

∂2Vj

∂τ2
+

∂Vj

∂τ
= Qj , j = 1, 2, ..., n+ 1. (19)

Here Qj are the known functions dependent on τ, y, V0, V1, ..., Vj−1, ω0, ω1, ..., ωj and
their first and second derivatives. Formulas for Qj can be written explicitly, but they are
rather bulky. We here indicate the explicit from only of the function Q1:

Q1 = − (2k + 1)
∂

∂τ

((
∂V0

∂τ

)2k
∂ω1

∂τ

)
− ∂2V0

∂y2
+ CV0.
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The boundary conditions for the equations (18), (19) are obtained from the require-
ment that the sum W + V satisfies the boundary condition

(W + V )|x=a = 0. (20)

Substituting the expressions for W in from (3) and for V from (16) in (20) and
taking into account that we are looking for Vj , j = 0, 1, ..., n + 1 as a boundary layer
type function, we have

V0|τ=0 = φ0 (y) , lim
τ→+∞

V0 = 0, (21)

Vj |τ=0 = φj (y) , lim
τ→+∞

Vj = 0, j = 1, 2, ..., n+ 1, (22)

where φi (y) = −Wi (1, y) for i = 0, 1, .., n; φn+1 ≡ 0.
The following lemma is valid.

Lemma 2. For every y ∈ [0, 1] the problem (18), (21) has a unique solution that is
infinitely differentiable with respect to τ , and with respect to y has continuous derivatives
to the (2n+ 4)-th order inclusively. Therewith the estimation∣∣∣∣∂iV0(τ, y)

∂τ i1∂yi2

∣∣∣∣ ≤ gi

(
|φ0(y)| , |φ′

0(y)| , ....,
∣∣∣φ(i2)

0 (y)
∣∣∣) e−τ , (23)

is valid, where i = i1 + i2; i2 = 0, 1, ..., 2n+ 4; gi (t1, t2, ..., ti2+1) are some known poly-
nomials of their own arguments with non-negative coefficients, and free terms of these
polynomials equal zero, and even at least one of other coefficients is non-zero.

Proof. The existence and uniqueness of the solution of problem (18), (21) was proved
in [8]. The solution of the problem (18), (21) for y = 0 and y = 1 is redefined by an
identity zero, and for y ∈ (0, 1) the solution in the parametric form is represented by the
following formulas:

τ =
2k + 1

2k

(
q2k0 − q2k

)
+ ln

∣∣∣∣q0q
∣∣∣∣ , V0 = −q2k+1 − q. (24)

Here q is a parameter, q0 (y) is a real root of the algebraic equation

q2k+1
0 + q0 + φ0(y) = 0. (25)

The smoothness of the solution of the problem (18), (21) was also proved in [8].
Therefore, here we derive only the estimation (23). From the first equality of (24) one
can obtain the estimation

|q| ≤ |q0(y)| exp
[
2k + 1

2k
q2k0 (y)

]
exp (−τ) . (26)

Transforming the equation (25) we have: q0(y) =
[
q2k0 (y) + 1

]−1
φ0(y), hence if fol-

lows |q0(y)| ≤ |φ0(y)|. Hence we have that exp

[
2k + 1

2k
q2k0 (y)

]
is bounded, i.e.

exp

[
2k + 1

2k
q2k0 (y)

]
≤ C0. Consequently, from (26) we get the estimation

|q| ≤ C0 |φ0(y)| exp (−τ) . (27)
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Taking into account (27) in the second equality of (24) we have

|V0| ≤ C |φ0(y)| exp (−τ) , C > 0. (28)

Recalling that the parametric from (24) of the solution of the problem (18), (21) was

obtained by means of the substitution
∂V0

∂τ
= q, from (27) we obtain an estimation for

∂V0

∂τ ∣∣∣∣∂V0

∂τ

∣∣∣∣ ≤ C0 |φ0(y)| exp (−τ) . (29)

The function
∂2V0

∂τ2
can be represented in the form

∂2V0

∂τ2
= −B−1 (τ, y)

∂V0

∂τ
, (30)

where B (τ, y) denotes the function

B (τ, y) = (2k + 1)

(
∂V0

∂τ

)2k

+ 1. (31)

Considering that 0 < B−1 (τ, y) ≤ 1 from (29) and (30) we get an estimation for
∂2V0

∂τ2
. The estimations for the derivatives V0(τ, y) with respect to τ of higher orders can

be obtained by differentiating the both hand sides of (30) with respect to τ and each
time considering the estimations for previous derivatives. These estimations will be of
the form (29), i.e. ∣∣∣∣∂iV0

∂τ i

∣∣∣∣ ≤ C0 |φ0(y)| exp (−τ) , i = 2, 3, ... . (32)

We pass to the proof of the estimations for the derivatives V0(τ, y) with respect to

y and for mixed derivatives. The function
∂V0

∂y
= z satisfies the equation in variations

obtained from the equation (18) by differentiation with respect to y:

∂

∂τ

[
B (τ, y)

∂z

∂τ

]
+

∂z

∂τ
= 0. (33)

From (21) we obtain that the function z should satisfy the boundary conditions

z|τ=0 = φ′
0(y), lim

τ→+∞
z = 0. (34)

The solution of the problem (33), (34) is of the form

z = φ′
0(y) exp

[
−
∫ τ

0

B−1 (ξ, y) dξ

]
. (35)



M.M. Sabzaliyev, I.M. Sabzaliyeva 117

Using (31) and estimation (29) in (35) we get the estimation

|z| =
∣∣∣∣∂V0

∂y

∣∣∣∣ ≤ C |φ′
0 (y)| exp (−τ) . (36)

It follows from (35) that
∂z

∂τ
= −B−1 (τ, y) z. Considering (36), hence we obtain an

estimation for the mixed derivative∣∣∣∣∂z∂τ
∣∣∣∣ = ∣∣∣∣ ∂2V0

∂y∂τ

∣∣∣∣ ≤ C |φ′
0(y)| exp (−τ) . (37)

We now can obtain an estimation for
∂2V0

∂y2
. Differentiating the both hand sides of

(35) with respect to , we have

∂z

∂y
= −

{
−
∫ τ

0

[
B−1 (ξ, y)

]′
ydξ

}
z + φ′′

0 (y) exp

[
−
∫ τ

0

B−1 (ξ, y) dξ

]
. (38)

It follows from (31)

[
B−1 (τ, y)

]′
y = − (2k + 1) (2k)B−2 (τ, y)

(
∂V0

∂τ

)2k−1
∂2V0

∂y∂τ
.

Obviously 0 < B−i ≤ 1 for any natural number i. Knowing the estimation for (29)
∂V0

∂τ

and estimation (37) for
∂2V0

∂y∂τ
, we estimate

[
B−1 (τ, y)

]′
y:

∣∣∣[B−1 (τ, y)
]′

y

∣∣∣ ≤ C |φ0(y)| |φ′
0(y)| exp (−τ) . (39)

Taking into account (36) and (39) in (38), we have∣∣∣∣∂z∂y
∣∣∣∣ = ∣∣∣∣∂2V0

∂y2

∣∣∣∣ ≤ [C1 |φ0(y)| |φ′
0(y)|

2
+ C2 |φ′′

0(y)|
]
exp(−τ). (40)

In the same way we prove the validity of the estimate (23) for the subsequent deriva-
tives V0(τ, y).

Lemma 2 is proved. J

It follows from (8) that the function φ0 (y) and all its even derivatives vanish for
y = 0. Hence and from the estimations that were obtained in the proof of lemma 2,
it follows that the function V0 (τ, y), all its derivatives with respect to τ and all even
derivatives with respect to y vanish for y = 0 (see.(29), (32), (40)).

Lemma 3. The problems (19), (22) have unique solutions and the functions Vj (τ, y) ,
j = 1, 2, ..., n + 1, with respect to τ are infinitely differentiable, and with respect to y
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have continuous derivatives to the (2n+ 2− 2j)-th order inclusively. And the following
estimations of the from∣∣∣∣∂iVj (τ, y)

∂τ i1∂yi2

∣∣∣∣ ≤
[
i2+j+1∑
S=0

|qjs (y)| τs
]
exp (−τ) , (41)

are valid, where i2 = 0, 1, ..., 2n+2− j, j = 1, 2, ..., n+1, qjs (y) are the known functions.

Proof. In [8] the existence, uniqueness and smoothness of the solution of problems (19),
(22) is proved, and the representation of these solutions is obtained in the following way:

Vj (τ, y) =

{
φj(y)−

∫ τ

0

[
B−1 (z, y) eν(z,y)

∫ +∞

z

Qj (ξ, y) dξ

]
dz

}
exp [−ν (τ, y)] . (42)

Here, ν (τ, y) denotes the function

ν (τ, y) =

∫ τ

0

B−1 (ξ, y) dξ.

Substituting j = 1 in (42), we obtain a formula for V1 (τ, y). Using explicit expressions

Q1 (τ, y) , ω1 (τ, y), and considering known estimations for V0,
∂V0

∂τ
,
∂2V0

∂y2
, we obtain

|Q1 (τ, y)| ≤ |q1(y)| exp(−τ), (43)

where q1(y) is a known function and moreover q
(2k)
1 (0) = q

(2k)
1 (1) = 0, k = 0, 1, ..., n+1.

Following (43), from (42) (for j = 1) we can obtain the following estimation:

|V1 (τ, y)| ≤ C (|φ1 (y)|+ τ |q1 (y)|) exp(−τ). (44)

Differentiating the both hand sides of (42) (for j = 1) with respect to τ , we have

∂V1

∂τ
= −B−1 (τ, y)

[
V1 +

∫ +∞

τ

Q1 (ξ, y) dξ

]
. (45)

Using the estimations (43) and (44) in (45), we obtain an estimation for
∂V1

∂τ
. The esti-

mation for higher derivatives with respect to τ are obtained from the formulas obtained
by successive differentiation of both hand sides of (45) and from the estimations for
pervious derivatives V1 (τ, y). Note that threes estimations are of the form∣∣∣∣∂iV1 (τ, y)

∂τ i

∣∣∣∣ ≤ (|q1 (y)|+ |q2 (y)| τ) exp(−τ), i = 1, 2, ... ,

where q2 (y) is a known function, and q
(2k)
2 (0) = q

(2k)
2 (1) = 0, k = 0, 1, ..., n+ 1.

We now derive estimations for the derivatives V1 (τ, y) with respect to y and for mixed

derivatives. The function
∂V1

∂y
can be defined as the solution of a boundary value problem

for an equation in variations that is obtained from (19) (for j = 1) by differentiation with
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respect to y. One can notice that the function
∂V1

∂y
also is defined by formula (42), but

in it the function φj(y) should be replaced by φ′
1 (y), the function

∫ +∞
z

Qj (ξ, y) dξ by
the following function: ∫ +∞

z

Q′
1y (ξ, y) dξ +B′

y (z, y)
∂V1 (z, y)

∂z
.

Consequently this time when obtaining estimations, instead of (43), we have to use the
estimation∣∣∣∣∫ +∞

z

Q1y (ξ, y) dξ +B′
y (z, y)

∂V1 (z, y)

∂z

∣∣∣∣ ≤ (|q1(y)|+ |q2(y)| z) exp(−z).

As a result, we obtain an estimation for
∂V1

∂y
in the form

∣∣∣∣∂V1

∂y

∣∣∣∣ ≤ (|q1(y)|+ |q2(y)| τ + |q3(y)| τ2
)
exp(−τ). (46)

If to differentiate the both hand sides of the formula for
∂V1

∂y
with respect to τ , we again

obtain an estimation of the form (46). It should be noted that for each differentiation of
V1 (τ, y) with respect to τ , the degree of the polynomial with respect to V1 (τ, y) standing
in the right hand side of the estimation increases by one unit. The estimation for V1 (τ, y)
in the general case is of the form∣∣∣∣∂iV1(τ, y)

∂τ i1∂yi2

∣∣∣∣ ≤ (|q10(y)|+ |q11(y)| τ + ...+ |q1i2+1(y)| τ i2+1
)
exp(−τ).

Continuing this process and considering each time the exploit form of the right hand
side of the equation for Vj , we obtain the estimation (41).

Lemma 3 is proved. J

We multiply all the functions Vj , j = 0, 1, ..., n + 1, by a smoothing factor and for
the obtained new functions we leave previous denotation. An the expense of smoothing
factors all the functions Vj , j = 0, 1, ..., n+1, vanish for x = 0. Therefore, hence and from
(13) it follows that the constructed sum W + V , in addition to the boundary condition
(20), satisfies also the condition

(W + V )|x=0 = 0. (47)

It is known from the construction process that all the functions Vj (τ, y) , j = 0, 1, ..., n+1,
vanish for y = 0 and y = 1. Hence and from (13) if follows that the sum W +V alongside
with the conditions (20), (47) satisfies the following boundary conditions as well:

(W + V )|y=0 = 0, (W + V )|y=1 = 0. (48)
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Thus, the constructed sum Ũ = W + V satisfies the boundary conditions (20), (47)
and (48). Having denoted U − Ũ = z, we have the following asymptotic expansion in a
small parameter of the solution of the problem (1), (2):

U =

n∑
i=0

εiWi +

n+1∑
j=0

εjVj + z, (49)

where z is a residual.
We have the following lemma.

Lemma 4. For the residual z the following estimation is valid

εp
∫∫
D

[(
∂z

∂x

)p

+

(
∂z

∂y

)p]
dxdy + ε

∫∫
D

[(
∂z

∂x

) 2

+

(
∂z

∂y

)2
]
dxdy+

+

∫∫
D

(
∂z

∂y

)2

dxdy + C1

∫∫
D

z2dxdy ≤ C2ε
2(n+1), (50)

where C1 > 0, C2 > 0 are constants independent of ε.

Proof. Adding (4) and (14), we have::

Lε

(
Ũ
)
= o

(
εn+1

)
. (51)

Subtracting the equation (51) from (1), we obtain

−εp

{
∂

∂x

[(
∂U

∂x

)p

−

(
∂Ũ

∂x

)p]
+

∂

∂y

[(
∂U

∂y

)p

−

(
∂Ũ

∂y

)p]}
−

−ε∆z +
∂z

∂x
+

∂2z

∂y2
+ cz = εn+1F (ε, x, y) , (52)

where ∥F (ε, x, y)∥L2(D) ≤ C for any ε ∈ [0, ε0) , and C > 0 is independent of ε.

If follows from (2), (20), (47), (48) and (49) that z satisfies the boundary conditions

z|x=0 = z|x=a = 0, z|y=0 = z|y=1 = 0. (53)

Multiplying the both hand sides of (52) by z = U − Ũ , and integrating by parts
allowing for boundary conditions (53), after certain transformations we get the estimation
(50).

Lemma 4 is proved. J

Combining the obtained results, we arrive at the following statement.
Theorem. Let f (x, y) ∈ Cn+1,2n+6 (D) and condition (7) be fulfilled. Then for the
generalized solution of the problem (1), (2) we have the asymptotic expansion, (50) where
the functions Wi are defined by the first iterative process, Vj are boundary layer type
functions near the boundary x = 1, and z is a residual, moreover the estimation (50) is
valid for it (49).
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