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Abstract. In this paper a system of exponents 1
∪{

e±iλnt
}
n∈N

is considered, where

λn = m
√
|Pm (n)| , Pm (n) = nm + αm−1n

m−1 + ...+ α0 is some polynomial of degree m,
m ∈ N . It is proved that under certain conditions on the exponent p (·) the basicity of this
system in a Lebesgue space with a variable summability exponent Lp(·) (−π, π) depends
on the coefficient αm−1 and m. Moreover, in the case of basicity, it is isomorphic to
the classical system of exponents

{
eint

}
n∈Z

in Lp(·) (−π, π). Earlier in the case p (·) ≡
m = 2 , α1 = 0, the Riesz basicity of this system in L2 (−π, π) was established by Yu.A.
Kazmin.
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1. Introduction

The study of the basis properties (completeness, minimality, basicity) of a system of ex-
ponents of the form Eλ ≡

{
eiλnt

}
n∈Z

in Lebesgue spaces Lp (a, b), 1 ≤ p ≤ ∞ (L∞ (a, b)

≡ C [a, b]) has a very rich and long history starting with the well-known results of Paley-
Wiener [21] and N. Levinson [16]. In [21], it was proved that for sup

n
|λn − n| < ln 2

π2 , the

system Eλ forms a Riesz basis for L2 (−π, π) and the question of refining the constant
ln 2
π2 in this inequality was also raised there. The best constant was found by M.I. Kadets
[15] and the corresponding result is known as the ”1

4 -Kadets” theorem. When {λn} has
the form λn = n + α signn , n ∈ Z, the criterion for the basicity of the system Eλ in
Lp (−π, π), 1 < p < ∞, was found in the work of A.M. Sedletskii [23]. The same result,
including for systems of sines and cosines, was obtained in the works of E.I. Moiseev [17],
[18]. These results were carried over to the complex case of a parameter α in the works
of G.G. Devdariani [13], [14]. Subsequently, these results were generalized in the works
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of B.T. Bilalov [2]-[5], [10], [11]. In the work of S.R. Sadigova & A.E. Guliyeva [22] the
basicity of the system Eλ (case λn = n + α signn) is established in a weighted space
Lp,w (−π, π), 1 < p < ∞ with a weight w (·) from the Muckenhoupt class Ap (−π, π).
A criterion for the basicity of the same system in Morrey-type spaces was found in the
work of B.T. Bilalov [7] (see also [9]).

For a Lebesgue space with a variable summability exponent, a similar result was
obtained in [8], the weighted case of the space was considered in [19], [20].

In this paper a system of exponents 1
∪{

e±iλnt
}
n∈N

is considered, where λn =
m
√
|Pm (n)| , Pm (n) = nm+αm−1n

m−1+...+α0 is some polynomial of degreem,m ∈ N .
It is proved that under certain conditions on the exponent p (·) the basicity of this system
in a Lebesgue space with a variable summability exponent Lp(·) (−π, π) depends on the
coefficient αm−1 and m. Moreover, in the case of basicity, it is isomorphic to the classical
system of exponents

{
eint

}
n∈Z

in Lp(·) (−π, π). Earlier in the case p (·) ≡ m = 2 , α1 = 0,

the Riesz basicity of this system in L2 (−π, π) was established by Yu.A. Kazmin.

2. Needful Information

We will use the usual notations: N will be a set of all positive integers; Z+ = {0}
∪
N ;

Z will be a set of all integers; C will stand for the field of complex numbers; L [·] will be
a linear span; M̄ will be a closure of the set M ; KerT will be a kernel of the operator
T ; RT will be a range of the operator T ; [X] is an algebra of bounded operators in X;
dimM dimension of M ; +̇ is a direct sum; X∗ is a dual space to X; T ∗ is conjugate to T
operator; X/M is a quotient space of a space X in the subspace M ; B-space is a Banach
space ; ∃! there exists a unique; p′ : 1

p + 1
p′ = 1 is the conjugate number to p.

We will use the concept of a ”double” basis in a Banach space X.

Definition 1. The system {x+n ;x−n }n∈N ⊂ X is called a double basis (or simply a basis)
in the B-space X, if ∀x ∈ X; ∃ ! {λ+n ;λ−n }n∈N ⊂ C:

∥∥∥∥∥
n1∑
k=1

λ+k x
+
k +

n2∑
k=1

λ−k x
−
k − x

∥∥∥∥∥
X

→ 0 , n1, n2 → ∞.

We also need some concepts and facts from the theory of close bases.

Definition 2. The systems {φn}n∈N and {ψn}n∈N ⊂ X in B-space X are said to be
p-close if ∑

n

∥φn − ψn∥pX < +∞.

Let us define the concept of a p-Bessel system.
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Definition 3. A minimal system {xn}n∈N ⊂ X in a B-space X with conjugate system
{x∗n}n∈N ⊂ X∗ is called p-Besselian if

(∑
n

|x∗n (f)|
p

) 1
p

≤M ∥f∥X , ∀f ∈ X.

The following theorem is true.

Theorem 1. [6] Let p-Besselian system {xn}n∈N ⊂ X form a basis for B-space X and
the system {yn}n∈N ⊂ X be a p′-close to {xn}n∈N . Then the following properties of
the system {yn}n∈N ⊂ X in X are equivalent: i) {yn}n∈N is complete; ii) {yn}n∈N is
minimal; iii) {yn}n∈N ω-linearly independent; iv) {yn}n∈N forms a basis isomorphic to
{xn}n∈N .

Let us recall the definition of ω-linear independence.

Definition 4. The system {xn}n∈N ⊂ X is called ω-linearly independent in B-space X

if it follows from
∞∑

n=1
λnxn = 0 that λn = 0, ∀n ∈ N .

More details of these and other facts can be found, for example, from the monograph
[6].

We also accept the following

Definition 5. A system {xn}n∈N ⊂ X in B-spaces X is called defective if, after adding
to it and eliminating a finite number of elements from it, it becomes complete and minimal
in X.

We will need the following theorem from the monograph [25, p. 129].

Theorem 2. [25] The system of exponents
{
eiλnt

}
is complete in C [a, b] if and only if

its closed linear span contains on other exponential function eiλt.

Now we give the definition of a Lebesgue space Lp(·) (−π, π) with a variable summa-
bility exponent p (·). Let p : [−π, π] → [1,+∞) be some Lebesgue measurable function.
By p : [−π, π] → [1,+∞) denote the class of all functions measurable on [−π, π] (with
respect to Lebesgue measure). Denote

Ip(·) (f) =

∫ π

−π

|f (t)|p(t) dt.

Let

Lp(·) (−π, π) =
{
f ∈ L0 : Ip(·) (f) < +∞

}
.

Assume

p− = inf vrai
(−π,π)

p (t) ; p+ = sup vrai
(−π,π)

p (t) .
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For p+ < +∞, Lp(·) (−π, π) is a linear space and moreover with respect to the norm

∥f∥p(·) = inf

{
λ > 0 : Ip(·)

(
f

λ

)
≤ 1

}
,

Lp(·) (−π, π) is a Banach space.
Let us introduce the following class of functions p (·):

WL (−π, π) = {p (·) : p (−π) = p (π) & ∃c > 0 :

∀t1, t2 ∈ [−π, π] : |t1 − t2| ≤
1

2
⇒ |p (t1)− p (t2)| ≤

c

− ln |t1 − t2|

}
.

The following property is known.

Property. [12] If p (·) : 1 < p− ≤ p+ < +∞, then the class of functions C∞
0 (−π, π)

(compactly supported and infinitely differentiable) is everywhere dense in Lp(·) (−π, π).

By p′ (·) : 1
p(t)+

1
p′(t) = 1 we will denote the conjugate of a function p (·). The following

generalized Hölder inequality is true.

Statement 1. Let 1 < p− ≤ p+ < +∞. Then ∃ c (p−; p+) > 0:∫ π

−π

|f g| dt ≤ c
(
p−; p+

)
∥f∥p(·) ∥g∥p′(·) , ∀f ∈ Lp(·) (−π, π) , ∀g ∈ Lp′(·) (−π, π) .

The following theorem is true.

Theorem 3. [24] Let p (·) ∈ WL (−π, π): p− > 1. Then the system of exponents{
eint

}
n∈Z

forms a basis for Lp(·) (−π, π).

Along with the system Eλ, consider its particular case

Eα
λ =

{
ei(n+α signn ) t

}
n∈Z

,

where α ∈ C is some parameter. In [8], the following theorem was proved.

Theorem 4. [8] Let p (·) ∈WL (−π, π): p− > 1. If the following inequalities satisfies

− 1

p′ (π)
< 2Reα <

1

p (π)
,

then the system Eα
λ forms a basis for Lp(·) (−π, π).

Using the method of proving this theorem, completely analogous to [1], the validity
of the following theorem is established.

Theorem 5. Let p (·) ∈WL (−π, π): p− > 1. System Eα
λ forms a basis for Lp(·) (−π, π)

if and only if it is isomorphic in it to the classical system of exponents E0
λ =

{
eint

}
n∈Z

.
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In obtaining the main results, we will essentially use the following Lp(·)-analogue of
the Theorem 2.2 [25].

Statement 2. Let p (·) ∈ WL (−π, π): p− > 1. System Eλ is complete in Lp(·) (−π, π)
if and only if L [Eλ] contains an exponent eiλt different from Eλ.

Proof. The necessary is obvious. Let eiλt /∈ Eλ and eiλt /∈ L [Eλ]. The definition of the
norm directly implies the following relation

∥f g∥p(·) ≤ ∥f ∥L∞(−π,π) ∥ g∥p(·) .

This inequality immediately implies that 1 ∈ L
[ {
ei(λn−λ) t

}
n∈Z

]
. It is quite obvious

that if |f (t)| ≤ |g (t)|, a.e. t ∈ (−π, π), then ∥f ∥p(·) ≤ ∥ g∥p(·). Consequently∥∥∥∥∥
∫ x

0

(
1−

∑
n

ane
i(λn−λ) t

)
dt

∥∥∥∥∥
p(·)

=

∥∥∥∥∥x−
∑
n

bne
i(λn−λ) x +

∑
n

bn

∥∥∥∥∥
p(·)

,

where bn = an

i(λn−λ) . It is clear that
∑

n bn ∈ L
[ {
ei(λn−λ) t

}
n∈Z

]
. On the other hand,

we have ∥∥∥∥∥
∫ x

0

(
1−

∑
n

ane
i(λn−λ) t

)
dt

∥∥∥∥∥
p(·)

≤

≤ c

∥∥∥∥∥
∫ π

−π

∣∣∣∣∣eiλt −∑
n

ane
iλnt

∣∣∣∣∣ dt
∥∥∥∥∥
p(·)

≤ c

∥∥∥∥∥eiλt −∑
n

ane
iλnt

∥∥∥∥∥
p(·)

.

It follows from these relations that x ∈ L
[ {
ei(λn−λ) t

}
n∈Z

]
. Continuing this process, as a

result, we obtain L
[
{xn}n∈Z+

]
⊂ L

[ {
ei(λn−λ) t

}
n∈Z

]
. Since the polynomials are dense

in C [−π, π] , then it follows that C [−π, π] ⊂ L
[ {
ei(λn−λ) t

}
n∈Z

]
. Since C [−π, π] (by

Property 2.1 [12]) is dense in Lp(·) (−π, π), then it follows that L
[ {
ei(λn−λ) t

}
n∈Z

]
=

Lp(·) (−π, π) ⇒ L
[
{eiλn t}n∈Z

]
= Lp(·) (−π, π).

The statement is proved. J

3. Main Results

Consider the following system of exponents

Eλ ≡ 1
∪{

e±iλnt
}
n∈N

,

where λn = m
√
|Pm (n)| ,Pm (n) = nm + αm−1n

m−1 + ... + α0 is a polynomial
of degree m, m ∈ N . Let us find the asymptotics λn as n → ∞. Let f (x) =
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(1 + x)
1
m , |x| < 1. We have f (n) (x) = 1

m

(
1
m − 1

)
...
(

1
m − n+ 1

)
(1 + x)

1
m−n ⇒

f(n)(0)
n ! =

1
m ( 1

m−1)...( 1
m−n+1)

n ! ⇒

⇒ sup
n

∣∣∣∣f (n) (0)n !

∣∣∣∣ ≤ 1.

From these relations it immediately follows

f (x) = 1 + f ′ (0)x+O
(
x2
)
= 1 +

1

m
x+O

(
x2
)
, x→ 0. (1)

Consequently (it is clear that for large n Pm (n) > 0)

λn =
(
nm + αm−1n

m−1 + ...+ α0

) 1
m = n

(
1 + αm−1

n +O
(

1
n2

)) 1
m = / by formula (1)/

= n

(
1 +

αm−1

m

1

n
+O

(
1

n2

))
=

(
n+

αm−1

m
+O

(
1

n

))
, n→ ∞.

Assume µn = n+ αm−1

m , n ∈ N . Considering the obvious inequality∣∣eix − eiy
∣∣ ≤ 2 |x− y| , ∀x, y ∈ R,

we have ∣∣eiλnt − eiµnt
∣∣ ≤ 2π |λn − µn| = O

(
1

n

)
, n→ ∞.

This estimate immediately implies

Lemma. System Eλ is r-close in Lp(·) (−π, π) for p− ≥ 1 to the system of exponents

Eµ = 1
∪{

e±iµnt
}
n∈N

,

for ∀r > 1.

Indeed, we have ∑
n

∥∥eiλnt − eiµnt
∥∥r
p(·) ≤ c

∑
n

1

nr
< +∞.

Suppose that the condition

− 1

2p′ (π)
<
αm−1

m
< − 1

2p (π)

is satisfied. Let p ∈ WL (−π, π) : p− > 1. Then it follows from Theorem 2.4 [8] that
the system Eµ forms a basis for Lp(·) (−π, π). By Theorem 5, it is isomorphic to the
system E0

λ in Lp(·) (−π, π) . Suppose en (t) = eint , n ∈ Z, and consider the following
functionals:

e∗n (f) =
1

2π

∫ π

−π

f (t) e−intdt , n ∈ Z.
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Paying attention to Statement 1, we have

|e∗n (f)| ≤ c ∥f∥p(·) , ∀f ∈ Lp(·) (−π, π) ,

where c > 0 is a constant depending only on p (·). Hence it follows that γ = sup
n

∥e∗n∥ <

+∞. It follows from the basicity of the system E0
λ in Lp(·) (−π, π) that the following

relation
1 ≤ ∥en∥p(·) ∥e

∗
n∥ ≤ const < +∞, ∀n ∈ Z,

holds. As ∥en∥p(·) = const ̸= 0, ∀n ∈ Z, then it follows from the previous relation that
∃ δ > 0:

0 < δ ≤ ∥e∗n∥ ≤ γ < +∞, ∀n ∈ Z.

Let us show that ∃ r ∈ (1, 2], with respect to which the system Eµ is r′-Besselian
in Lp(·) (−π, π). First, we establish the validity of this fact with respect to the sys-
tem E0

λ. Indeed, let r = min {p−; 2}. It is easy to see that the continuous embedding
Lp(·) (−π, π) ⊂ Lr (−π, π), holds, i.e. ∃ c > 0 :

∥f∥Lr(−π,π) ≤ c ∥f∥p(·) , ∀f ∈ Lp(·) (−π, π) . (2)

It follows from the classical Hausdorff-Young theorem that ∃ cr > 0:(∑
n

|e∗n (f)|
r′

) 1
r′

≤ cr ∥f∥Lr(−π,π) .

Taking into account (2), hence we obtain(∑
n

|e∗n (f)|
r′

) 1
r′

≤ cr ∥f∥p(·) , ∀f ∈ Lp(·) (−π, π) ,

and as a result the system E0
λ is a r′-Besselian in Lp(·) (−π, π). Let us show that the

system Eµ is also a r′-Besselian in Lp(·) (−π, π). Indeed, let T ∈
[
Lp(·) (−π, π)

]
be an

automorphism such that T [Eµ] = E0
λ , i.e. T transfers system Eµ to system E0

λ. From
the relation

δnk = e∗n (ek) = e∗n (T [eα;k]) = (T ∗e∗n) (eα;k) , ∀n, k ∈ Z,

where
eα;0 = 1, eα;n = ei(n+

αm−1
m signn) t , ∀n ̸= 0,

it follows that
T ∗e∗n = e∗α;n, ∀n ∈ Z,

where
{
e∗α;n

}
n∈Z

⊂ Lp′(·) (−π, π) is a system biorthogonal to Eµ. Consequently(∑
n

∣∣e∗α;n (f)∣∣r′
) 1

r′

=

(∑
n

|T ∗e∗n (f)|
r′

) 1
r′

=

(∑
n

|e∗n (Tf)|
r′

) 1
r′

≤
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≤ c ∥Tf∥p(·) ≤ c ∥T∥[Lp(·)(−π,π)] ∥f∥p(·) , ∀f ∈ Lp(·) (−π, π) .

This established that the system Eµ is r′-Besselian in Lp(·) (−π, π). Thus, the systems
Eλ and Eµ satisfy all the conditions of Theorem 2.1 [6] and, as a result, the following
theorem holds.

Theorem 6. Let p ∈WL (−π, π) : p− > 1, and the following inequalities

− 1

2p′ (π)
<
αm−1

m
<

1

2p (π)

holds. Then the following properties of the system Eλ are equivalent in Lp′(·) (−π, π):
i) Eλ is complete; ii) Eλ is minimal; iii) Eλ ω-linearly independent; iv) Eλ forms a basis
isomorphic to Eµ.

In what follows, we will assume that the conditions

λn ̸= 0 , ∀n ̸= 0 & λi ̸= λj , i ̸= j,

are fulfilled. Let all conditions of Theorem 6 be satisfied. Then it follows from the proof
of Theorem 2.1 [6] that the system Eλ forms a defect basis for Lp(·) (−π, π) (i.e. after
adding a finite number of elements to it and eliminating from it a finite number of ele-
ments, it forms a basis), and there exists a Fredholm operator F ∈

[
Lp(·) (−π, π)

]
, such

that F [Eλ] = Eµ, i.e. F transfers the system Eλ to the system Eµ. Consequently, it is
quite obvious that for large n0 ∈ N , the system Eλ;n0 ≡

{
e±iλnt

}
|n|>n0

is minimal in

Lp(·) (−π, π), and its defect is equal to 2n0 + 1. Then it follows from Statement 2 that

eiλkt /∈ L [Eλ;n0 ] (the closure is taken in Lp(·) (−π, π), where k : |k| ≤ n0 is an arbitrary

integer. As a result, we obtain that the system
{
eiλkt

}∪
Eλ;n0 is minimal in Lp(·) (−π, π).

Continuing this process, we finally obtain that the system
{
eiλkt

}
k:|k|≤n0

∪
Eλ;n0 is mini-

mal in Lp(·) (−π, π), and as a result, as follows from Theorem 6, it forms a basis isomorphic
to Eµ in Lp(·) (−π, π). Thus, the following final theorem is true.

Theorem 7. Let p ∈WL (−π, π) : p− > 1, and the following conditions are fulfilled

− 1

2p′ (π)
<
αm−1

m
<

1

2p (π)
, λn ̸= 0 , ∀n ̸= 0 & λi ̸= λj , i ̸= j.

Then the system Eλ forms a basis isomorphic to the classical system of exponents E0
λ in

Lp(·) (−π, π).

In fact, under the conditions of the theorem, the system Eλ is isomorphic to the basis
Eµ. Since the system Eµ is isomorphic to E0

λ (by Theorem 5), it is clear that the system
Eλ is also isomorphic to E(x).
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2013.

13. Devdariani G.G. The basis property of a trigonometric system of functions. Diff.
Uravn., 1986, 22 (1), pp. 168–170 (in Russian).

14. Devdariani G.G. TThe basis property of a system of functions. Diff. Uravn., 1986,
22 (1), pp. 170–171 (in Russian).

15. Kadets M.I. The exact value of the Paley-Wiener constant. Dokl. Akad. Nauk SSSR,
1964, 155 (6), pp. 1253–1254 (in Russian).

16. Levin B.Ya. Distribution of Roots of Entire Functions. Gosudarstv. Izdat. Tehn.-
Teor. Lit., Moscow, 1956 (in Russian).

17. Moiseev E.I. The basis property for systems of sines and cosines. Dokl. Akad. Nauk
SSSR, 1984, 275 (4), pp. 794–798 (in Russian).

18. Moiseev E.I. On the basis property of a system of sines. Diff. Uravn., 1987, 23 (1),
pp. 177–179 (in Russian).

19. Najafov T., Nasibova N., Mamedova Z. Bases of exponents with a piecewise linear
phase in generalized weighted Lebesgue space. J. Inequal. Appl., 2016, 2016 (92), pp.
1–12.

20. Nasibova N.P. On bases from perturbed exponent systems in variable Lebesgue space.
Caspian J. Appl. Math., Ecology and Econ., 2015, 3 (1), pp. 95–101.

21. Paley R.C., Wiener N. Fourier Transforms in the Complex Domain. Amer. Math.
Soc. Colloq. Publ., 19, Amer. Math. Soc, Providence, RI, 1934.



N.P. Nasibova 105

22. Sadigova S.R., Guliyeva A.E. Bases of the perturbed system of exponents in weighted
Lebesgue space with a general weight. Kragujevac J. Math., 2022, 46 (3), pp. 477–486.

23. Sedletskii A.M. Biorthogonal expansions of functions in series of exponents on inter-
vals of the real axis. Russ. Math. Surv., 1982, 37 (5), pp. 57–108.

24. Sharapudinov I.I. Some problems in approximation theory in the spaces Lp(x)(E).
Anal. Math., 2007, 33 (2), pp. 135–153 (in Russian).

25. Young R.M. An Introduction to Nonharmonic Fourier Series. Academic Press, New
York, 1980.


