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Abstract. It the work, it is assumed that only a part of the components of the phase
state vector is controllable. To form the current values of the control actions, we use the
measured values of the components both at the current and in some previous moments of
time. As a result, the process under study is described by differential equations with time-
lagging arguments in the phase variable. Another feature of the approach to the feedback
control is that the parameters of the dependence of the control actions on the measured
values of the state are constant on subsets (zones) of the phase space, into which it is
divided in advance. We call such feedback parameters zonal. Due to the fact that the
phase space is divided into a finite number of zones, the number of optimizable feedback
parameters in the control problem is also finite. Accordingly, the original feedback control
problem is reduced to a finite-dimensional optimization problem with the values of the
zonal feedback parameters as design variables.
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1. Introduction

We consider the problem of optimal control of a dynamic process with continuous state
feedback described by a system of ordinary differential equations. The issues of control
of technical objects and technological processes with feedback within the framework of
automatic control systems attracted attention of many scientists (mainly engineers) as
early as in the 19th century. Starting from the 50s of the last century, the feedback optimal
control theory began to actively develop, first, for objects with lumped parameters [3],
[6], [7], and later, for objects with distributed parameters [2], [3], [6]. Various approaches
have been developed for both state and output feedback control. In the works [2], [3],
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[5], they conduct the analysis of the state of research both in the optimal control and
feedback control theories.

In our work, we assume that only a part of the components of the phase state vec-
tor is controllable. Such a situation may arise when there is no possibility of real-time
measurement of some state parameters, or in the case when these measurements have
large errors. These components include, for example, the rate of change in the phase
state, usually measured using indirect methods or obtained by means of calculations. We
propose to compensate for the inability to measure some of the components of the phase
vector by using the measured values of the components at some previous points in time
to form the values of control actions. As a result of using the dependence of the control
actions on the state at some previous moments of time, the process under study will be
described by differential equations with time-lagging arguments in the phase variable.

Another feature of the considered feedback problem is that the parameters of the
dependence of the control actions on the measured values of the state are constant on
subsets (zones) of the phase space, into which it is divided in advance. We call such
feedback parameters ”zonal”. Because the phase space is divided into a finite number of
zones, the number of optimizable feedback parameters in the control problem is also fi-
nite. Accordingly, the original feedback control problem is reduced to a finite-dimensional
optimization problem, which consists of optimizing the values of the zonal feedback pa-
rameters. As a result, we have a specific instance of a parametric optimal control problem.
We investigate the differentiability of the objective functional of the reduced problem with
respect to the zonal values of the feedback parameters, and obtain formulas for the com-
ponents of the gradient of the objective functional. They make it possible to formulate
necessary optimality conditions of the synthesized parameters, as well as to use them for
carrying out computer experiments to solve some model test problems using first-order
numerical optimization methods.

2. Problem Statement

We consider the control problem for a dynamic object described by a nonlinear system
of ordinary differential equations

ẋ(t) = f (x(t), u(t)) , t ∈ (0, T ], x ∈ Rn. (1)

Here the n− dimensional vector function x(·) is a phase variable; u(·) ∈ U ⊂ Rr is a piece-
wise continuous r−dimensional control vector-function belonging to a convex compact
set of feasible values U ; the function f(·, ·) is continuously differentiable in its arguments.
A set X0 of possible initial states of the object is given

x(t) = x0 = const, t ≤ 0, x0 ∈ X0 ⊂ Rn, (2)

and also given is the corresponding distribution function ρX0

(
x0

)
of values x0 on the set

X0 such that

0 ≤ ρX0

(
x0

)
,

∫
X0

ρX0

(
x0

)
dx0 = 1.
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The objective functional is specified as

F (u) =

∫
X0

{∫ T

0

f0(x, u)dt+ Φ (x(T ))

}
ρX0

(
x0

)
dx0 (3)

defining the quality of the control function u(·) of the object on average for all possible
initial states x0 ∈ X0.

Suppose that during the object’s operation it is possible to continuously measure in
time the state of the part x̃(t) ∈ Rm of the components of the phase vector x(t), with
m ≤ n. Without loss of generality, we will further assume that the vector function x̃(t)
consists of the first m components of the phase vector x(t). To form the current control
action at time t, in addition to the state value x̃(t), we also use the previously measured
values x̃(t− τ). The choice of the lag time τ is made depending on the rate of change in
the object’s state, namely, at high speeds, the time τ is to be chosen small. The choice
of the lag time τ also depends on the accuracy of measurements; with low accuracy, τ
is chosen large enough so that the dynamics of the change in the object’s state would
exceed the accuracy of measurements.

To form the current values of the control actions using feedback, we introduce the
concept of ”zonal control”. Let Ω ⊆ Rm be the set of all possible states of the components
x̃(t) of the object’s state x(·), which they can take under all possible values of the initial
state x0 ∈ X0 and control u(t) ∈ U . We split the set Ω into L subsets (zones) Ωi ⊂ Ω,
i = 1, 2, . . . , L, such that

L∪
i=1

Ωi = Ω, int (Ωi) ∩ int (Ωj) = ∅, i, j = 1, 2, . . . , L, i ̸= j.

The current value of the control at the point of time t will be built in the form of the
following linear dependence on the values of the components of the phase variable x̃(t)
measured at times t and t− τ :

u(t) = Ki
1x̃(t) +Ki

2x̃(t− τ), x̃(t) ∈ Ωi. (4)

Let’s introduce the notation

Ki =
(
Ki

1,K
i
2

)
, K =

(
K1,K2, . . . ,KL

)
.

The dependence (4) in component-wise form can be written as follows:

us(t) =
m∑
j=1

[
ki1s,j x̃j(t) + ki2s,j x̃j(t− τ)

]
, x̃(t) ∈ Ωi, s = 1, 2, . . . , r. (5)

Here Ki
1 =

(
ki1s,j

)
and Ki

2 =
(
ki2s,j

)
are constant matrices of dimension r×m, determin-

ing the optimizable feedback parameters when the components x̃(t) of the phase variable
belong to the ith subset (zone) Ωi. Controls of the form (4) will be called ”zonal” [1],
[4]. For the sake of simplicity, it is assumed that in (4) τ is sufficiently small and for
x̃(t) ∈ Ωi, x̃(t− τ) ∈ Ωi.
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To build the subsets Ωi constructively, we proceed as follows. We will assume that
each of the components x̃s(t) of the phase vector x̃(t) under all possible initial conditions
x0 ∈ X0 and controls u(t) ∈ U belongs to some given finite interval:

ωs ≤ x̃s(t) ≤ ωs, t ∈ [0, T ], s = 1, 2, . . . ,m. (6)

Let’s divide each of the intervals [ωs, ωs] into ls subintervals by the points

ωj
s, j = 0, 1, 2, . . . , ls; ω0

s = ωs, ωls
s = ωs.

Let’s introduce the notation for the m−dimensional parallelepipeds:

Ωi =
{
x(t) ∈ Rm : ωis

s ≤ xs(t) ≤ ωis+1
s , s = 1, 2, . . . ,m

}
,

is = 0, 1, 2, . . . , ls − 1; s = 1, 2, . . . ,m. (7)

And the notation for the set of all vertices of the ith zone (parallelepiped)

Wi =
{
w = (w1, w2, . . . , wm) : wj = ω

ij
j ∧ ωij+1

j , j = 1, 2, . . . ,m
}
.

Here and below, as will be clear from the context, i = (i1, i2, . . . , im) designates an
m−dimensional multi-index, i.e. the m−dimensional number of the corresponding zone
Ωi. It is clear that

Ω =

l1∪
i1=0

. . .

lm−1∪
im=0

Ωi

and the total number of zonal areas is

L =
m∏
i=1

li.

Substituting the feedback control into (4) using the values of the observable compo-
nents x̃(t) at the current and previous points of time into the system of equations (1),
we obtain:

ẋ(t) = f
(
x(t),Ki

1x̃(t) +Ki
2x̃(t− τ)

)
, t ∈ (0, T ], x̃(t) ∈ Ωi. (8)

Here and below, x(t) = x
(
t;x0,K

)
is a piecewise continuously differentiable vector-

function that is a solution to system (8) for given admissible initial conditions x0 ∈ X0

and parameters of the feedback K. The system of differential equations (8) is a sys-
tem with a constant lag argument in the phase variable. Under the prescribed condi-
tions on the vector-function f (x(·), u(·)), The solution to the Cauchy problem, x(t) =
x
(
t; x0, K

)
, for arbitrarily given constant feedback parameters K = (K1, K2) and the

initial condition x0 ∈ X0 has a solution from the class of continuous piecewise differen-
tiable functions.

Let Ti, x0,K ⊂ [0, T ] denote the set of points of time t at which the components x̃(t)
of the phase trajectory x(t) with the initial point x0 and feedback parameters Ki =
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Ki

1,K
i
2

)
, K =

(
K1,K2, . . . ,KL

)
, belong to the set (zone) Ωi. The sets Ti, x0,K may be

multiply connected, i.e.

Ti, x0,K =

li∑
j=1

T j
i, x0,K .

This means that the components x̃(t) of the phase trajectory x(t) in li separate time
intervals belong to the set Ωi:

x̃(t) ∈ Ωi, t ∈ T j
i, x0,K , j = 1, 2, . . . , li.

It is clear that Ti, x0,K = ∅ means that the components x̃
(
t;x0,K

)
of the phase

trajectory for t ∈ [0, T ] did not intersect the domain Ωi. Note that in the case when the
admissible control region U has a simple structure, for example, it is an r−dimensional
parallelepiped

U = {u ∈ Rr : us ≤ us(t) ≤ us, s = 1, 2, . . . , r} ,

where us and us are given values, the constraints on the corresponding values of the zonal
feedback parameters can also be reduced to a simple form. Taking into account (4)-(6),
the following linear constraints on the feedback parameters will take place:

u ≤
m∑
j=1

(
ki1s,j + ki2s,j

)
w ≤ u, ∀w ∈Wi, i = 1, 2, . . . , L, (9)

i.e. conditions (9) must be satisfied at all vertices of all parallelepipedsΩi, i = (i1, . . . , im),
0 ≤ ij ≤ lj −1, j = 1, 2, . . . , L. It is possible that feedback with the object can be carried
out only at given discrete points of time ts ∈ [0, T ], s = 0, 1, 2, . . . , Nt. Then we choose
the current value of the control in the form:

u(t) = Ki
1x (ts) +Ki

2x (ts − τ) , t ∈ [ts, ts+1) , x (ts) ∈ Ωi. (10)

As can be seen from (10), the values of the feedback parameters over the time interval
[ts, ts+1) are determined by the values of Ki of the zone Ωi, to which the controllable
components of the state x̃(t) belonged at the moment of measuring, ts.

Let’s introduce the notation:

Si
x0,K =

{
s : x̃

(
t;x0,K

)
∈ Ωi, s = 0, 1, 2, . . . , Nt

}
, i = 1, 2, . . . , L;

Ti,x0,K =
∪

s∈Si
x0,K

[ts, ts+1) .

Substituting controls in the form of feedback (10) into (1), we will have:

ẋ(t) = f
(
x(t),Ki

1x (ts) +Ki
2x (ts − τ)

)
,

when t ∈ [ts, ts+1) and x (ts) ∈ Ωi or t ∈ Ti,x0,K . Constraints (9) on the zonal feedback
parameters will not change in this case.

Thus, the original optimal control problem (1)-(3), taking into account the feedback
with a part of the components of the phase variable in the form (4) and (5), has been
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reduced to the following optimization problem: Find the feedback parametersKi
1 andK

i
2,

i = 1, 2, . . . , L, – (r × m)−dimensional constant matrices satisfying linear constraints
(9), for which the corresponding solutions of the Cauchy problems with respect to the
system of differential equations (8) involving the lag argument with the set of initial
conditions (2) minimizes the given functional (3), which already depends only on K,
i.e. F (K). The dimension of the obtained parametric optimal control problem is M =
r×m×L, i.e. K ∈ RM . Note that even if the original control problem (1)-(3) is convex,
then the feedback control problem (2), (3), (8), and (9), despite the linear dependence
(4), in the general case may be nonconvex with respect to K.

Let us make the following remark in connection with the choice of the dependence of
the control action on the values of a part of the state components in the form (4). If it is
possible to control all components of the state vector x(t), it is known that the feedback,
for example, in the case of linear systems of the second order

ẍ(t) = Aẋ(t) +Bx(t) + Cu(t) (11)

is selected in the following form:

u(t) = α1(t)x(t) + α2(t)ẋ(t),

where α1(t) and α2(t) are feedback parameters. Assuming that the components of the
velocity state ẋ(t) are not directly controllable, we replace the dependence (11) by the
one ”close” to it:

u(t) = α1(t)x(t) +
α2(t) [x(t)− x(t− τ)]

τ
.

Further, assuming that the feedback parameters do not depend on time, but on the
number of the subdomain to which the current state x(t) belongs, we obtain the feedback
in the form proposed in (4).

3. Derivation of the Formulas

To investigate the differentiability of the functional of problem (2), (3), (8), and (9),
and obtain formulas for the gradient of the objective functional (3) with respect to the
feedback parameters, we use the well-known technique of incrementing the optimizable
parameters. First of all, note that the mutual independence of the initial conditions
x0 ∈ X0 for the gradient of functional (3) implies the following equality:

∇K F (K) = ∇
∫
X0

{∫ T

0

f0 (x(t), K) dt+ Φ (x(T ))

}
ρX0

(
x0

)
dx0 =

=

∫
X0

∇

{∫ T

0

f0 (x(t), K) dt+ Φ (x(T ))

}
ρX0

(
x0

)
dx0 =

=

∫
X0

∇ I (K;x0) ρX0

(
x0

)
dx0. (12)
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Here we have introduced the notation for the functional

I
(
K;x0

)
=

∫ T

0

f0 (x(t),K) dt+ Φ (x(T ))

and instead of the control u(t), the feedback parameters K are used, which determine
the control u(t). Therefore, we will study the functional I

(
K;x0

)
for an arbitrary given

admissible initial condition x0 ∈ X0.
Let K = (K1,K2) be the zonal parameters of the feedback, which correspond, accord-

ing to (4) and (5), to the control u(t) = u(t;K) and the solution x(t) = x
(
t;K, x0

)
of

the Cauchy problem (2) and (8). Suppose that the parameters K obtained an increment
∆K = (∆K1,∆K2): K

∆
1 = K1+∆K1, K

∆
2 = K2+∆K2. The corresponding increments

will receive the control u(t):

u∆
(
t;K∆

)
= u(t;K) + u(t;K), t ∈ [0, T ],

and the phase vector x(t):

x∆
(
t;K∆, x0

)
= x

(
t;K,x0

)
+ x

(
t;K,x0

)
, t ∈ [0, T ],

including the controlled components x̃(t) of the phase variable:

x̃∆
(
t;K∆, x0

)
= x̃

(
t;K,x0

)
+∆x̃

(
t;K,x0

)
, t ∈ [0, T ].

According to (2), the following conditions hold:

∆x(t) = 0, ∆x̃(t) = 0, t ≤ 0.

It is clear that for x̃(t) ∈ Ωi

∆u(t;K) = ∆Ki
1x̃1(t) +∆Ki

2x̃2(t− τ)+

+Ki
1∆x̃(t) +Ki

2∆x̃(t− τ) + ∆Ki
1∆x̃(t) + ∆Ki

2x̃(t− τ). (13)

The system of differential equations for the increment of the phase variable up to terms
of the first order of accuracy is easily determined from (8) and (13):

∆ẋ(t) =
∂f(t)

∂x
∆x(t) +

∂f(t)

∂u
×

×
[
∆Ki

1x̃(t) +Ki
1∆x̃(t) +∆Ki

2x̃(t− τ) +Ki
2∆x̃(t− τ)

]
when t ∈ Ti,x0,K . Using the well-known Grönwall’s lemma and the ”steps” method for
studying Cauchy problems with respect to differential equations involving a lagging ar-
gument, one can prove the validity of the estimate:

∥∆x(t)∥Ln
2 [0, T ] ≤ C ∥K∥RM .

Hereinafter, for brevity, the following notation is used:

f(t) = f (x(t), u(t)) , f(t± τ) = f (x(t± τ), u(t± τ)) ,
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f0(t) = f0 (x(t), u(t)) ,

f0(t± τ) = f0 (x(t± τ), u(t± τ)) .

Let us consider an estimate for the increment of the functional I
(
K;x0

)
:

∆I
(
K;x0

)
= I

(
K +∆K;x0

)
− I

(
K;x0

)
=

=

∫ T

0

[
∂f0(t)

∂x
∆x(t) +

∂f0(t)

∂u
∆u(t)

]
dt+R.

Here R = R (∥K∥ , ∥∆x∥) is the remainder term of the second order of smallness with
respect to ∥K∥ and ∥∆x∥, where ∥.∥ are any equivalent norms of the corresponding
spaces. Let’s move the right-hand sides of equations (9) to the left, scalar multiply the
resulting vector expression, which is equal to zero, by an arbitrary n−dimensional vector
function ψ(t), and add to the integrand (12):

∆I
(
K;x0

)
=

∫ T

0

{
∂f0(t)

∂x
∆x(t) +

∂f0(t)

∂u
∆u(t)+

+ψ∗(t)

[
∆ẋ(t)− ∂f(t)

∂x
∆x(t)− ∂f(t)

∂u
∆u(t)

]}
dt+R.

Here ∗ is the transposition sign.
If we use integration by parts, after grouping we will have:

∆I
(
K;x0

)
=

∫ T

0

[
−ψ̇∗(t)− ψ∗(t)

∂f(t)

∂x
− ∂f(t)

∂x

]
∆x(t)dt+

+

∫ T

0

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

]
∆u(t)dt+R. (14)

We then transform the 2nd integral in (14), taking into account (5), (7), and (8), sequen-
tially. We then have: ∫ T

0

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

]
∆u(t)dt =

=
L∑

i=1

∫
Ti,x0,K

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

]
∆u(t)dt =

=
L∑

i=1

∫
Ti,x0,K

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

] [
∆Ki

1x̃(t) +Ki
1∆x̃(t)

]
dt+

+
L∑

i=1

∫
Ti,x0,K

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

] [
∆Ki

2x̃(t− τ) +Ki
2∆x̃(t− τ)

]
dt =

= S1 + S2. (15)
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In the second term, S2, we change the time variable:

ξ = t− τ, t = ξ + τ, ξ ∈ [−τ, T − τ ].

Since ψ(t) is arbitrary, we will assume:

ψ(t) = 0, t ∈ [T − τ, T ]. (16)

Then we will have for S2:

L∑
i=1

∫
Ti, x0,K⊂[−τ, T−τ ]

[
∂f0(ξ + τ)

∂u
− ψ∗(ξ + τ)

∂f(ξ + τ)

∂u

]
×

×
[
∆Ki

2x̃(ξ) +Ki
2∆x̃(ξ)

]
dξ. (17)

Renaming the variable ξ once again by t, taking into account (14), (15), (16), and
(17), we will have:

∆I
(
K;x0

)
=

L∑
i=1

∫
Ti, x0,K

[
−ψ̇∗(t)− ψ∗(t)

∂f(t)

∂x
− ∂f0(t)

∂x
+

+

(
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

)
Ki

1

]
∆x̃(t)dt+

+

L∑
i=1

∫
Ti, x0,K⊂[−τ, T−τ ]

[
∂f0(t+ τ)

∂u
− ψ∗(t+ τ)

∂f(t+ τ)

∂u

]
Ki

2∆x̃(t)dt+

+

L∑
i=1

∫
Ti, x0,K

[
∂f0(t)

∂u
− ψ∗(t)

∂f(t)

∂u

]
∆Ki

1x̃(t)dt+

+
L∑

i=1

∫
Ti, x0,K⊂[−τ, T ]

[
∂f0(t+ τ)

∂u
− ψ∗(t+ τ)

∂f(t+ τ)

∂u

]
∆Ki

2x̃(t)dt+R. (18)

Since the function ψ(t) is arbitrary, in addition to condition (16), we require that it be
a solution to the following system of differential equations:

ψ̇∗(t) =



−ψ∗(t)∂f(t)∂x − ∂f0(t)
∂x +

(
∂f0(t)
∂x − ψ∗(t)∂f(t)∂t

)
Ki

1,

when t ∈ Ti, x0,K ⊂ [ T − τ, T ],

−ψ∗(t)∂f(t)∂x − ∂f0(t)
∂x +

(
∂f0(t)
∂x − ψ∗(t)∂f(t)∂t

)
Ki

1+

+
[
∂f0(t+τ)

∂x − ψ∗(t+ τ)∂f(t+τ)
∂u

]
Ki

2,

when t ∈ Ti, x0,K ⊂ [−τ, T − τ ].

(19)

The Cauchy problem (16) and (19) with initial data given at the right end will be
called adjoint. Its solution ψ(x, t) is a continuous and almost everywhere continuously
differentiable function.
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By virtue of the above estimate for the remainder of the functional increment:

R ≤ o (∥∆x(t)∥ , ∥∆K∥)

and the known estimate of the increment of the solution for the Cauchy problem:

∥∆x(t)∥ ≤ α ∥∆K∥ , α ≥ 0,

it follows that the functional I
(
K;x0

)
is differentiable with respect to the feedback

parametersK for an arbitrary admissible initial condition x0 ∈ X0. Then the components
of the gradient of the functional I

(
K;x0

)
for an arbitrary given admissible initial state

x0 ∈ X0 with respect to the matrix parameters of the feedback Ki =
(
Ki

1,K
i
2

)
from

formula (18) are defined as the main parts with linear increments of the corresponding
parameters:

∇Ki
1
I
(
K, x0

)
=

∫
Ti, x0,K

(
∂f0(t)

∂u
− ψ∗(t)

∂f0(t)

∂u

)∗

x̃(t)dt,

∇Ki
2
I
(
K, x0

)
=

∫
Ti, x0,K⊂[−τ, T−τ ]

(
∂f0(t+ τ)

∂u
− ψ∗(t+ τ)

∂f0(t+ τ)

∂u

)∗

x̃(t)dt.

Here x(t) and ψ(t) are solutions of the direct (2) and (8), and the corresponding adjoint
(16) and (19) Cauchy problems for the current values of the zonal feedback parameters
Ki =

(
Ki

1,K
i
2

)
, i = 1, 2, . . . , L, and a given admissible initial condition x0 ∈ X0. The

vector function ψ(t) = ψ(t;x0,K) is a solution of the adjoint Cauchy problem (16) and
(19) corresponding to the solution x(t) = x(t;x0,K) of the Cauchy problem (2) and (8)
for admissible initial state x0 and feedback parameters K. Thus, taking into account
(12), the following theorem can be considered proven.

Theorem 1. Under the accepted assumptions for the functions participating in the
optimal control problem (1)-(3), the functional (3) is differentiable with respect to the
parameters of linear feedback (4) with the part x̃(t) of the components of the phase vec-
tor x(t), and the components of the functional gradient are determined by the following
formulas:

∇Ki
1
F (K) =

∫
X0

∫
Ti,x0,K

(
∂f0(t)

∂u
− ψ∗(t)

∂f0(t)

∂u

)∗

x̃(t)ρX0

(
x0

)
dtdx0, (20)

∇Ki
2
F (K) =

∫
X0

∫
Ti, x0,K⊂[−τ, T−τ ]

(
∂f0(t+ τ)

∂u
− ψ∗(t+ τ)

∂f0(t+ τ)

∂u

)∗

×

×x̃(t)ρX0

(
x0

)
dtdx0. (21)

Next, we formulate the necessary conditions for optimality of the zonal values of the
feedback parameters in the well-known variational form.
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Theorem 2. Let the functions f(x, u), f0(x, u), and Φ(x) be continuously differentiable

with respect to their arguments, K̂ =
(
K̂1, K̂2

)
be the optimal values of the zonal feedback

parameters given in the form (4) that minimize functional (3) in problem (2), (3), and
(8). Then, for all admissible values of K satisfying (9), the following inequality holds:⟨

∇KF (K),K − K̂
⟩
≥ 0,

where ∇KF (K) is the gradient of the functional (3) defined by formulas (19), (20), and
(21).
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