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INVERSE PROBLEM FOR RECONSTRUCTING THE
RIGHT SIDE OF A ONE-DIMENSIONAL WAVE

EQUATION
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Abstract. An inverse problem of recovering the unknown parameter of an external
source for a one-dimensional wave equation with a nonlocal additional condition is con-
sidered. It is assumed that the unknown source parameter depends only on time. By
integration, the problem is transformed to an inverse boundary value problem with local
conditions. A difference analogue of the differential problem in the form of an implicit
difference scheme is constructed and a non-iterative computational algorithm for solving
the resulting system of difference equations is proposed. As a result, an explicit formula is
obtained for determining the approximate value of the sought parameter for each discrete
value of the time variable.
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1. Introduction

It is known that in the mathematical modeling of many processes of heat and mass
transfer, wave processes [2], [3], [12], problems of recovering unknown parameters of
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external sources often arise. These problems belong to the class of inverse problems of
mathematical physics associated with the restoration of the right-hand sides of partial
differential equations. In such problems, in addition to solving differential equations, it
is required to restore the unknown parameters of external sources. Inverse problems of
recovering the right-hand sides of partial differential equations of parabolic type were
studied in many works [1], [2], [5], [6], [9], [11]. There is also an extensive literature on
inverse problems of reconstructing the right-hand sides of wave equations [4], [7], [8], [9].
However, most of these works mainly investigate the solvability of inverse problems for
wave equations, the existence and uniqueness of their solutions.

The aim of this work is to develop a computational algorithm for the numerical
solution of the inverse problem of reconstructing the right-hand side of a one-dimensional
wave equation.

2. Statement Problem

Let us consider a one-dimensional wave equation with a source

∂2u(x, t)

∂t2
= ν(t)

∂2u(x, t)

∂x2
+ λ(t)u(x, t) + q(t)F (x, t), 0 < x < l, 0 < t ≤ T, (1)

with the following conditions:

u(x, 0) = φ1(x), (2)

∂u(x, 0)

∂t
= ψ1(x), (3)

∂u(0, t)

∂x
= θ(t), (4)

u(l, t) = p(t). (5)

It is known that the direct problem for equation (1) consists in determining the
function u(x, t) from equation (1) with given coefficients ν(t) > 0, λ(t), right-hand side
q(t)F (x, t) and conditions (2)-(5).

Suppose that, in addition to the function u(x, t), the unknown is also the function
q(t) and restoration of this function is required according to the following additional
condition: ∫ l

0

u(x, t)dx = r(t). (6)

where r(t) is given function.

Thus, the problem is to determine the functions u(x, t) and q(t) that satisfy equation
(1) and conditions (2)-(6). The problem posed belongs to the class of inverse problems
associated with the restoration of the right-hand sides of partial differential equations
[2], [9].
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3. Method for Solving the Problem

First, we reduce problem (1)-(6) to a problem with local conditions.
Let us integrate equation (1) on the segment [0, x] with respect to x. Performing

integration by parts and taking into account condition (4), we obtain

∂2

∂t2

∫ x

0

u(ξ, t)dξ = ν(t)
∂u(x, t)

∂x
− ν(t)θ(t) + λ(t)

∫ x

0

u(ξ, t)dξ + q(t)

∫ x

0

F (ξ, t)dξ.

By designating ∫ x

0

u(ξ, t)dξ = w(x, t),

we write the last integral relation in the form

∂2w(x, t)

∂t2
= ν(t)

∂2w(x, t)

∂x2
−ν(t)θ(t)+λ(t)w(x, t)+q(t)f(x, t), 0 < x < l, 0 < t ≤ T, (7)

where f(x, t) =
∫ x

0
F (ξ, t)dξ.

For equation (7), we will have the following initial conditions

w(x, 0) = φ(x), (8)

∂w(x, 0)

∂t
= ψ(x), (9)

and the boundary conditions
w(0, t) = 0, (10)

∂w(l, t)

∂x
= p(t), (11)

w(l, t) = r(t), (12)

where φ(x) =
∫ x

0
φ1(ξ)dξ, ψ(x) =

∫ x

0
ψ1(ξ)dξ.

Let us construct a difference analogue of the differential problem (7) - (12). For this
purpose, we introduce a uniform difference grid

ω = {(xi, tj) : xi = i∆x, tj = j∆t, i = 0, 1, 2, ...n, j = 0, 1, 2, ...,m}

in a rectangular area {0 ≤ x ≤ l, 0 ≤ t ≤ T} with steps ∆x = l/n by variable x ∆t =
T/m by time t. To the nonlinear equation (7) at the internal nodes of the grid ω, we
associate the implicit difference scheme

wj+1
i − 2wj

i + wj−1
i

∆t2
= νj+1w

j+1
i+1 − 2wj+1

i + wj+1
i−1

∆x2
− νj+1θj+1 + λj+1wj+1

i + qj+1f j+1
i ,

i = 1, n− 1, j = 0,m− 1.

We write difference analogs of the initial and boundary conditions (8)-(12) in the form

w0
i = φi,

w1
i − w0

i

∆t
= ψi,
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wj+1
0 = 0,

wj+1
n − wj+1

n−1

∆x
= pj+1,

wj+1
n = rj+1,

where

wj
i ≈ w(xi, tj), φi = φ(xi), νj = ν(tj), ψi = ψ(xi), rj = r(tj),

θj = θ(tj), pj = p(tj), f ji = f(xi, tj), λj = λ(tj), qj ≈ q(tj).

It should be noted that for the direct problem, this difference scheme has the first order
of accuracy both in space and in time with an error O(∆x,∆t) and is unconditionally
stable.

We transform the resulting system of difference equations to the form

aiw
j+1
i−1 − ciw

j+1
i + biw

j+1
i+1 = −dji − qj+1f j+1

i , i = 1, n− 1, j = 0,m− 1, (13)

w0
i = φi, w1

i = w0
i + ψi∆t, (14)

wj+1
0 = 0, wj+1

n = wj+1
n−1 + pj+1∆x, (15)

wj+1
n = rj+1, (16)

where

ai =
νj+1

∆x2
, bi =

νj+1

∆x2
, ci = ai + bi +

1

∆t2
− λj+1, dji =

2wj
i − wj−1

i

∆t2
− νj+1θj+1.

Difference problem (13) - (16) is a system of linear algebraic equations in which the
unknowns are approximate values of the sought functions w(x, t) and q(t) at the internal
nodes of the difference grid, i.e. wj+1

i , qj+1 i = 1, n, j = 0,m− 1. To solve this system,
we use the approach proposed in [5]. We represent the solution of system (13) - (15) for
each fixed value j in the form

wj+1
i+1 = αi+1w

j+1
i + βi+1, i = 0, 1, 2, . . . , n− 1, (17)

where αi+1, βi+1 so far unknown coefficients. Let’s write a similar expression for wj+1
i

wj+1
i = αiw

j+1
i−1 + βi.

Substituting expressions wj+1
i , wj+1

i−1 in equation (13), we obtain the following formulas
for determining the coefficients αi, βi:

αi =
ai

ci − αi+1bi
, (18)

βi =
biβi+1 + dji + qj+1f j+1

i

ci − αi+1bi
, i = n− 1, n− 2, ..., 1.
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The initial values of these coefficients are found from the requirement of equivalence of
representation (17) to the second equation (15) for i = n− 1

αn = 1, βn = pj+1∆x.

Obviously, having determined αn, the remaining values of the coefficients αi, i = n −
1, n− 2, ..., 1, can be successively found by formula (18).

The nonlinear equation for βi transforms to the form

βi =
bi

ci − αi+1bi
βi+1 +

dji
ci − αi+1bi

+
f j+1
i

ci − αi+1bi
qj+1

or

βi = siβi+1 + yi + ziq
j+1,

where si =
bi

ci−αi+1bi
, yi =

dj
i

ci−αi+1bi
, zi =

fj+1
i

ci−αi+1bi
.

Using elementary calculations, we transform the last relation for βi to the form

βi = β̃i + z̃iq
j+1, i = 1, 2, ..., n− 1, (19)

where the variables β̃i and z̃i are solutions of the following two independent first-order
difference problems:

β̃i = siβ̃i+1 + yi, β̃n = βn, (20)

z̃i = siz̃i+1 + zi, z̃n = 0, i = n− 1, n− 2, ..., 1. (21)

Now we will find the relationship between qj+1 and wj+1
n in an explicit form. For this,

we write representation (17) i = n− 1

wj+1
n = αnw

j+1
n−1 + βn.

Substituting here the expression for wj+1
n−1, i.. w

j+1
n−1 = αn−1w

j+1
n−2 + βn−1, we have

wj+1
n = αnαn−1w

j+1
n−2 + αnβn−1 + βn.

Further, substituting into the last equation the expressions for wj+1
n−2, w

j+1
n−3, ..., w

j+1
1 , we

obtain a formula in which wj+1
n expressed through wj+1

0

wj+1
n = wj+1

0

n∏
i=1

αi +
n−1∑
i=1

βi

n∏
k=i+1

αk + βn. (22)

Now, substituting relation (19) into equation (22), we obtain the required relationship
between wj+1

n and qj+1

wj+1
n = wj+1

0

n∏
i=1

αi +
n−1∑
i=1

β̃i

n∏
k=i+1

αk + qj+1
n−1∑
i=1

z̃i

n∏
k=i+1

αk + βn.
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From the resulting equation, you can find the approximate value of the desired function
q(t) for t = tj+1

qj+1 =
wj+1

n − wj+1
0

∏n
i=1 αi −

∑n−1
i=1 β̃i

∏n
k=i+1 αk − βn∑n−1

i=1 z̃i
∏n

k=i+1 αk

.

Taking into account conditions (15), (16), the last formula can be written in the form

qj+1 =
rj+1 −

∑n−1
i=1 β̃i

∏n
k=i+1 αk − pj+1∆x∑n−1

i=1 z̃i
∏n

k=i+1 αk

. (23)

Defining qj+1 by formula (23), using the recurrent formula (17), one can sequentially
determine wj+1

1 , wj+1
2 , ..., wj+1

n−1. When moving to the next time layer, the described
calculation procedure is repeated again.

Thus, the computational algorithm for solving the inverse problem (1)-(6) to restore
the value of the function q(t) for each discrete value of the time variable tj , j = 1, 2, ...,m
is based on:

solving two linear difference problems of the first order (20), (21) with respect to
auxiliary variables β̃i and z̃i, i = 1, n;

determining the values of variables αi, βi, i = 1, n, by formulas (18), (19);
definition qj+1 from (23);
using representation (17) to calculate wj+1

i , i = 1, n.
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