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Abstract. In the two-dimensional space R2, we consider the magnetic relation of
Rayleigh: ∫

R2 |(i∇+ ω)ψ (x)|2 dx∫
R2 |ψ (x)|2 dx

,

where ω (x) = 1
2 (−x2, x1), which appears in the mathematical theory of surface super-

conductivity when studying the first eigenvalue of the Landau operator. In a simple way,
it is proved that the exact lower bound in the first-order Sobolev space, H1

(
R2
)
, of the

Rayleigh magnetic ratio is equal to one.
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1. Introduction

When studying surface superconductivity in a type II superconducting material with dif-
ferent cross sections, it becomes necessary (see [1]-[11]), under the growth of the intensity
of an external magnetic field, to study the asymptotic behavior of the first eigenvalue
and the corresponding eigenfunction of the system of Ginsburg-Landau equations (see
[3, p. 143]) 

(i∇+ hA)
2
ψ (x) = h2

σ2

(
1− |ψ (x)|2

)
ψ (x) ,

curl (curlA− β) = − 1
hRe

[
ψ (x) (i∇+ hA)ψ (x)

] in Ω ,

(i∇+ hA)ψ (x) · ν = 0 ,
curlA = β

}
on ∂Ω ,
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where x = (x1, x2) ∈ R2, ∇ =
(

∂
∂x1

, ∂
∂x2

)
, β is the external magnetic field, h is the mag-

netic field strength, A = (a1 (x1, x2) , a2 (x1, x2)) is the induced real magnetic potential,
i =

√
−1, σ > 0 is the Ginsburg-Landau parameter, Ω is the material cross section, ∂Ω

is the boundary of the domain Ω, ψ (x) is the wave function, ν is the external normal
vector, and

curlA =
∂a2 (x1, x2)

∂x1
− ∂a1 (x1, x2)

∂x2
, curl2A =

(
∂ (curlA)

∂x2
, −∂ (curlA)

∂x1

)
.

From the second variation (see [10]) of the Ginsburg-Landau functional

G (ψ,A) =

∫
Ω

{
|(i∇+ hA)ψ (x)|2 + h2

σ2

(
|ψ (x)|2 − 1

)2}
dx+

+h2
∫
R2

|curlA− β|2 dx

in the vicinity of the normal state ψ (x) = 0 it can be seen that this problem is closely
related to finding the exact lower bound of the Rayleigh magnetic quantity∫

R2 |(i∇+ hA)ψ (x)|2 dx∫
R2 |ψ (x)|2 dx

(1)

in the first-order Sobolev space, W 1
2

(
R2
)
=

0

W 1
2

(
R2
)
= H1

(
R2
)
.

Due to the gauge invariance of expression (1) (see [3], [8], [10]) and equality (see [8,
Lemma 2.1])

α (h) = inf
ψ(x)∈H1(R2)

∫
R2 |(i∇+ hω (x))ψ (x)|2 dx∫

R2 |ψ (x)|2 dx
= α (1) |h| , (2)

where ω (x) = 1
2 (−x2, x1), it suffices to find an explicit value of α (1).

The following theorem holds.

Theorem 1. [see [8, Theorem 2.2], [10, Proposition 2.7]] Let A = ω (x). Then α (1) = 1.

Before proceeding to the proof of the theorem, we note some remarks.
1◦. As noted in [10], this result is well known from the physical literatures and in

some form goes back to Landau.
2◦. In [8], in contrast to [10], where the infimum is taken over the set H1

(
R2
)
, in

formula (2) the infimum is taken over the set W
(
R2
)
=W 1,2

loc

(
R2
)
∩L2

(
R2
)
. But it does

not change α (h) (including α (1)).
3◦. In both works, calculating the Rayleigh value∫

R2 |(i∇+ ω (x))ψ (x)|2 dx∫
R2 |ψ (x)|2 dx
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for the function ψ (x) = e−
r2

4 , where r =
√
x21 + x22, it is established that α (1) ≤ 1. But

when proving the inequality α (1) ≥ 1, various arguments are applied.
4◦. In [10], it is noted that unfortunately in [8], in the proof of the inequality α (1) ≥ 1,

numerous mistakes were made and a new proof of this inequality is given. But we note
that unfortunately, in [10] also, mistakes are made in the proof of the inequality α (1) ≥ 1.
So, in [10], they introduce the sets

Ak =
{
u (r) ∈ C1

0 ([0,+∞) ; R) : u (0) = 0, if k ∈ Z\ {0}
}
,

where Z is the set of integers, and it is claimed that

Jk (uk) ≥ inf
Ak


∫ +∞
0

(
|u′ (r)|2 +

(
k
r − r

2

)2 |u (r)|2) rdr∫ +∞
0

|u (r)|2 rdr

 , k ∈ Z\ {0} , (3)

where

Jk (uk) =

∫ +∞
0

(
|u′k (r)|

2
+
(
k
r − r

2

)2 |uk (r)|2) rdr∫ +∞
0

|uk (r)|2 rdr
, k ∈ Z,

uk (r) =
1

2π

∫ π

−π
ψ̃ (r, θ) e−ikθdθ, k ∈ Z, (4)

ψ̃ (r, θ) = ψ (r cos θ, r sin θ) =
+∞∑

k=−∞

uk (r) e
ikθ, (5)

ψ (x1, x2) ∈ C∞
0

(
R2
)
.

Then using the equality∫
R2

|(i∇+A)ψ (x)|2 dx = 2π

+∞∑
k=−∞

Jk (uk)

∫ +∞

0

|uk (r)|2 rdr (6)

and the inequalities

inf
Ak


∫ +∞
0

(
|u′ (r)|2 +

(
k
r − r

2

)2 |u (r)|2) rdr∫ +∞
0

|u (r)|2 rdr

 ≥ 1

for k ∈ Z\ {0}, it is claimed that∫
R2

|(i∇+A)ψ (x)|2 dx ≥
∫
R2

|ψ (x)|2 dx.

There are two flaws in this reasoning. First, in the equality (6) there is J0 (u0). It should
have been estimated from below. Secondly, the set Ak (k ∈ Z\ {0}) includes real-valued
functions, and the functions uk (r) (k ∈ Z) are complex-valued functions. Therefore,
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generally speaking, uk (r) /∈ Ak . If there would be a real-valued function h (r) from the
set Ak such that

Jk (uk) = Jk (h) =

∫ +∞
0

(
|h′ (r)|2 +

(
k
r − r

2

)2 |h (r)|2) rdr∫ +∞
0

|h (r)|2 rdr
, (7)

then statement (3) would be true. It is easy to verify that the complex-valued func-
tion uk (r), which satisfies equality (7), should have the following form: uk (r) =
(c1 + ic2)φk (r), where φk (r) ∈ Ak, c1 and c2 are real numbers. But, generally speaking,
the function uk (r) does not have to be in the form of uk (r) = (c1 + ic2)φk (r).

5◦. In both papers, they use the unobvious equality∫
R2

|(i∇+A)ψ (x)|2 dx =

= 2π
+∞∑

k=−∞

∫ +∞

0

(
|u′k (r)|

2
+

(
k

r
− r

2

)2

|uk (r)|2
)
rdr, (8)

where ψ (x) ∈ C∞
0

(
R2
)
and uk (r) are determined by the formula (4).

2. Correct Proof of Theorem 1

In view of the non-obviousness of equality (8), we present its proof.

Lemma 1. Let ψ (x) ∈ C∞
0

(
R2
)
. Then equality (8) is true.

Proof. Let ψ (x) ∈ C∞
0

(
R2
)
. Given the apparent form of the magnetic potential, ω (x) =

1
2 (−x2, x1), we have:∫

R2

|(i∇+A)ψ (x)|2 dx =

∫
R2

(∣∣∣∣i ∂ψ∂x1 − x2
2
ψ

∣∣∣∣2 + ∣∣∣∣i ∂ψ∂x2 +
x1
2
ψ

∣∣∣∣2
)
dx ≡

≡
∫
R2

(
|h (x1, x2)|2 + |g (x1, x2)|2

)
dx, (9)

where

h (x1, x2) = i
∂ψ

∂x1
− x2

2
ψ, g (x1, x2) = i

∂ψ

∂x2
+
x1
2
ψ.

Moving to the polar coordinate system, we obtain:

h̃ (r, θ) = h (r cos θ, r sin θ) = i
[
∂ψ̃
∂r cos θ − ∂ψ̃

∂θ
sin θ
r

]
− r sin θ

2 ψ̃,

g̃ (r, θ) = g (r cos θ, r sin θ) = i
[
∂ψ̃
∂r sin θ + ∂ψ̃

∂θ
cos θ
r

]
+ r cos θ

2 ψ̃,
(10)

where ψ̃ = ψ̃ (r, θ) = ψ (r cos θ, r sin θ).
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Given the expansion

h̃ (r, θ) =
+∞∑

k=−∞

hk (r) e
ikθ and g̃ (r, θ) =

+∞∑
k=−∞

gk (r) e
ikθ,

where

hk (r) =
1

2π

∫ π

−π
h̃ (r, θ) e−ikθdθ, gk (r) =

1

2π

∫ π

−π
g̃ (r, θ) e−ikθdθ, k ∈ Z,

and Parseval’s equality, we rewrite (9) in the following form:∫
R2

|(i∇+ ω)ψ (x)|2 dx = 2π
+∞∑

k=−∞

∫ +∞

0

(
|hk (r)|2 + |gk (r)|2

)
rdr. (11)

Using equation (10) and the expansion (5), we calculate hk(r) and gk(r) (k ∈ Z).
We have:

hk (r) =
1

2π

∫ π

−π

{
i

[
∂ψ̃

∂r
cos θ − ∂ψ̃

∂θ

sin θ

r

]
− r sin θ

2
ψ̃

}
e−ikθdθ =

=
1

2π

∫ π

−π
i
∂ψ̃

∂r

e−i(k−1)θ + e−i(k+1)θ

2
dθ − i

2π

1

r

∫ π

−π

∂ψ̃

∂θ

e−i(k−1)θ − e−i(k+1)θ

2i
dθ−

− 1

2π

r

2

∫ π

−π
ψ̃
e−i(k−1)θ − e−i(k+1)θ

2i
dθ =

i

2

(
u′k−1 + u′k+1

)
−

− 1

2π

1

2r

∫ π

−π

∂ψ̃

∂θ

(
e−i(k−1)θ − e−i(k+1)θ

)
dθ +

r

4
i (uk−1 + uk+1) . (12)

Now we calculate the integral

1

2π

∫ π

−π

∂ψ̃

∂θ

(
e−i(k−1)θ − e−i(k+1)θ

)
dθ.

Integrating by parts and taking into account the equality

e−i(k±1)θψ̃ (r, θ)
∣∣∣π
−π

= 2iψ̃ (−r, 0) sin (k ± 1)π = 0,

we obtain

1

2π

∫ π

−π

∂ψ̃

∂θ

(
e−i(k−1)θ − e−i(k+1)θ

)
dθ = i (k − 1)uk−1 − i (k + 1)uk+1. (13)

Given (13) in (12), we obtain

hk (r) =
i

2

{(
u′k−1 + u′k+1

)
−



58 Correct proof of finding the exact lower bound of the Rayleigh magnetic value

−
(
k − 1

r
− r

2

)
uk−1 +

(
k + 1

r
− r

2

)
uk+1

}
, k ∈ Z. (14)

By doing the same for gk (r) (k ∈ Z), we obtain the following formula:

gk (r) =
1

2

{(
u′k−1 − u′k+1

)
−

−
(
k − 1

r
− r

2

)
uk−1 −

(
k + 1

r
− r

2

)
uk+1

}
, k ∈ Z. (15)

Considering formulas (14) and (15) in equality (11), we obtain∫
R2

|(i∇+ ω)ψ (x)|2 dx = 2π

∫ +∞

0

1

4

{
+∞∑

k=−∞

[∣∣(u′k−1 + u′k+1

)
−

−
(
k − 1

r
− r

2

)
uk−1 +

(
k + 1

r
− r

2

)
uk+1

∣∣∣∣2 +
+

∣∣∣∣(u′k−1 − u′k+1

)
−
(
k − 1

r
− r

2

)
uk−1 −

(
k + 1

r
− r

2

)
uk+1

∣∣∣∣2
]}

rdr. (16)

Let σ (x1, x2) = Reψ (x1, x2) and τ (x1, x2) = Imψ (x1, x2). Then for any integer k
we have:

uk (r) = σk (r) + iτk (r) = uk (r) =
1

2π

∫ π

−π
[σ̃ (r, θ) + iτ̃ (r, θ)] e−ikθdθ, (17)

where σ̃ (r, θ) = σ (r cos θ, r sin θ) and τ̃ (r, θ) = τ (r cos θ, r sin θ).
Given the representation (17) in the formula (16), we obtain:∫

R2

|(i∇+ ω)ψ (x)|2 dx =

= 2π

∫ +∞

0

1

4

{
+∞∑

k=−∞

{[(
σ′
k−1 + σ′

k+1

)
−
(
k − 1

r
− r

2

)
σk−1 +

(
k + 1

r
− r

2

)
σk+1

]2
+

+

[(
σ′
k−1 − σ′

k+1

)
−
(
k − 1

r
− r

2

)
σk−1 −

(
k + 1

r
− r

2

)
σk+1

]2
+

+

[(
τ ′k−1 + τ ′k+1

)
−
(
k − 1

r
− r

2

)
τk−1 +

(
k + 1

r
− r

2

)
τk+1

]2
+

+

[(
τ ′k−1 − τ ′k+1

)
−
(
k − 1

r
− r

2

)
τk−1 −

(
k + 1

r
− r

2

)
τk+1

]2}}
rdr =

= 2π

∫ +∞

0

1

4

{
+∞∑

k=−∞

[
2
(
σ′
k−1

)2
+ 2

(
σ′
k+1

)2
+ 2

(
k + 1

r
− r

2

)2

(σk+1)
2
+
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+2

(
k − 1

r
− r

2

)2

(σk−1)
2
+ 2

(
σ′
k−1 + σ′

k+1

)(k + 1

r
− r

2

)
σk+1−

−2
(
σ′
k−1 + σ′

k+1

)(k − 1

r
− r

2

)
σk−1 − 2

(
σ′
k−1 − σ′

k+1

)(k − 1

r
− r

2

)
σk−1−

− 2
(
σ′
k−1 − σ′

k+1

)(k + 1

r
− r

2

)
σk+1

]}
rdr+

+2π

∫ +∞

0

1

4

{
+∞∑

k=−∞

[
2
(
τ ′k−1

)2
+ 2

(
τ ′k+1

)2
+ 2

(
k + 1

r
− r

2

)2

(τk+1)
2
+

+2

(
k − 1

r
− r

2

)2

(τk−1)
2
+ 2

(
τ ′k−1 + τ ′k+1

)(k + 1

r
− r

2

)
τk+1−

−2
(
τ ′k−1 + τ ′k+1

)(k − 1

r
− r

2

)
τk−1 − 2

(
τ ′k−1 − τ ′k+1

)(k − 1

r
− r

2

)
τk−1−

− 2
(
τ ′k−1 − τ ′k+1

)(k + 1

r
− r

2

)
τk+1

]}
rdr =

= 2π

∫ +∞

0

{ ∞∑
k=−∞

[
(σ′
k)

2
+

(
k

r
− r

2

)2

σ2
k

]}
rdr+

+2π

∫ +∞

0

{ ∞∑
k=−∞

[
(τ ′k)

2
+

(
k

r
− r

2

)2

τ2k

]}
rdr =

= 2π
∞∑

k=−∞

∫ +∞

0

(
|u′k|

2
+

(
k

r
− r

2

)2

|uk|2
)
rdr.

The lemma is proved. J

Proof of the Theorem 1. Let ψ (x1, x2) ∈ C∞
0

(
R2
)
and uk (r) (k ∈ Z) is deter-

mined by the formula (4). Let us show that for any integer k the following inequality is
true:

Jk (uk) =

∫ +∞
0

(
|u′k (r)|

2
+
(
k
r − r

2

)2 |uk (r)|2) rdr∫ +∞
0

|uk (r)|2 rdr
≥ 1. (18)

Step I. k ∈ Z\ {0}. Let’s introduce the notation:

E = {u (r) ∈ C∞ ([0,+∞) ; C) : u (0) = 0, ∃ru > 0, supp u (r) ⊂ [0, ru]} ,

where supp u (r) is the carrier of the function u (r). Obviously, if ψ (x1, x2) ∈ C∞
0

(
R2
)
,

then for any k ∈ Z\ {0} uk (r) ∈ E. Let σ (r) + iτ (r) = u (r) ∈ E. Using the fact that if
u (r) ∈ E, then the functions σ (r) = Reu (r) and τ (r) = Imu (r) also belong to the set
E, we obtain:∫ +∞

0

(
|u′ (r)|2 +

(
k

r
− r

2

)2

|u (r)|2
)
rdr =

∫ +∞

0

[
(σ′ (r))

2
+

(
k

r
− r

2

)2

σ2 (r)

]
rdr+
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+

∫ +∞

0

[
(τ ′ (r))

2
+

(
k

r
− r

2

)2

τ2 (r)

]
rdr ≥

∫ +∞

0

2σ (r)σ′ (r)

(
k

r
− r

2

)
rdr+

+

∫ +∞

0

2τ (r) τ ′ (r)

(
k

r
− r

2

)
rdr =

∫ +∞

0

[
σ2 (r)

]′ (
k − r2

2

)
dr+

+

∫ +∞

0

[
τ2 (r)

]′ (
k − r2

2

)
dr = σ2 (r)

(
k − r2

2

)∣∣∣∣+∞

0

+

+

∫ +∞

0

σ2 (r) rdr + τ2 (r)

(
k − r2

2

)∣∣∣∣+∞

0

+

∫ +∞

0

τ2 (r) rdr =

=

∫ +∞

0

[
σ2 (r) + τ2 (r)

]
rdr =

∫ +∞

0

|u (r)|2 rdr.

Consequently, for any function from the set E, the following inequality is true∫ +∞

0

(
|u′ (r)|2 +

(
k

r
− r

2

)2

|u (r)|2
)
rdr ≥

∫ +∞

0

|u (r)|2 rdr. (19)

From inequality (19), in particular, we obtain

Jk (uk) =

∫ +∞
0

(
|u′k (r)|

2
+
(
k
r − r

2

)2 |uk (r)|2) rdr∫ +∞
0

|uk (r)|2 rdr
≥ 1, k ∈ Z\ {0} . (20)

Step II. k = 0. Let’s introduce the set

L = {u (r) ∈ C∞ ([0,+∞) ; C) : ∃ru > 0, supp u (r) ⊂ [0, ru]} .

Obviously, the functions

u0 (r) =
1

2π

∫ π

−π
ψ̃ (r, θ) dθ, σ0 (r) = Reu0 (r) and τ0 (r) = Imu0 (r)

are elements of the set L. Using these facts, to estimate J0 (u0) from below, we perform
the following calculations:∫ +∞

0

(
|u′0 (r)|

2
+
(
−r
2

)2
|u0 (r)|2

)
rdr =

∫ +∞

0

[
(σ′

0 (r))
2
+
(
−r
2

)2
σ2
0 (r)

]
rdr+

+

∫ +∞

0

[
(τ ′0 (r))

2
+
(
−r
2

)2
τ20 (r)

]
rdr ≥

∫ +∞

0

2σ0 (r)σ
′
0 (r)

(
−r
2

)
rdr+

+

∫ +∞

0

2τ0 (r) τ
′
0 (r)

(
−r
2

)
rdr =

=

∫ +∞

0

(
σ2
0 (r)

)′ (
−r

2

2

)
dr +

∫ +∞

0

(
τ20 (r)

)′ (
−r

2

2

)
dr =
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= σ2
0 (r)

(
−r

2

2

)∣∣∣∣+∞

0

+

∫ +∞

0

σ2
0 (r) rdr + τ20 (r)

(
−r

2

2

)∣∣∣∣+∞

0

+

+

∫ +∞

0

τ20 (r) rdr =

∫ +∞

0

[
σ2
0 (r) + τ20 (r)

]
rdr =

∫ +∞

0

|u0 (r)|2 rdr.

Therefore,∫ +∞

0

(
|u′0 (r)|

2
+
(
−r
2

)2
|u0 (r)|2

)
rdr ≥

∫ +∞

0

|u0 (r)|2 rdr.

Thus, we have come to the inequality

J0 (u0) =

∫ +∞
0

(
|u′0 (r)|

2
+
(
− r

2

)2 |u0 (r)|2) rdr∫ +∞
0

|u0 (r)|2 rdr
≥ 1. (21)

From inequalities (20) and (21), we have that for any integer k, inequality (18) holds.
From equality (8) and inequality (18), we obtain that for any function from the space
C∞

0

(
R2
)
, the following inequality holds:∫

R2

|(i∇+ ω)ψ (x)|2 dx =

= 2π

+∞∑
k=−∞


∫ +∞
0

(
|u′k (r)|

2
+
(
k
r − r

2

)2 |uk (r)|2) rdr∫ +∞
0

|uk (r)|2 rdr
·
∫ +∞

0

|uk (r)|2 rdr

 =

= 2π
+∞∑

k=−∞

[
Jk (uk) ·

∫ +∞

0

|uk (r)|2 rdr
]
≥

≥ 2π
+∞∑

k=−∞

∫ +∞

0

|uk (r)|2 rdr =
∫
R2

|ψ (x)|2 dx. (22)

Since the space of basic functions C∞
0

(
R2
)
is everywhere dense in the space H1

(
R2
)
,

it follows from inequality (22) that for any function from the space H1
(
R2
)
, the following

inequality is true ∫
R2 |(i∇+ ω)ψ (x)|2 dx∫

R2 |ψ (x)|2 dx
≥ 1.

From here we have

α (1) = inf
H1(R2)

∫
R2 |(i∇+ ω)ψ (x)|2 dx∫

R2 |ψ (x)|2 dx
≥ 1.

The theorem is proved. J
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