UNIQUENESS OF THE SOLUTION OF THE INVERSE PROBLEM FOR DIFFERENTIAL OPERATOR WITH SEMISEPARATED BOUNDARY CONDITIONS

L.I. MAMMADOVA, I.M. NABIEV*, Ch.H. RZAYEVA

Received: 22.11.2021 / Revised: 11.02.2022 / Accepted: 17.02.2022

Abstract. In the article we consider the Sturm-Liouville operator with semiseparated boundary conditions, one of which contains a spectral parameter. An asymptotic formula for the eigenvalues of the operator under consideration is given and a uniqueness theorem for the solution of the inverse problem of recovering the corresponding boundary value problems is proved.

Keywords: Sturm-Liouville operator, eigenvalues, inverse problem, uniqueness theorem

Mathematics Subject Classification (2020): 34A55, 34B24, 34L05, 47E05

1. Introduction

Boundary-value problems with boundary conditions depending on the spectral parameter often arise in various fields of natural science and technology in the study of a number of problems, the construction of systems for the protection of devices against impact, vibrations of a string with a load at the end, torsional vibrations of a shaft with a flywheel at the end, vibrations of antennas loaded with concentrated capacities and inductances, etc. (see, for example, [1], [11] and the literature there). Inverse spectral problems associated with problems of this type also play an important role in the study of some nonlinear evolutionary equations of mathematical physics.

* Corresponding author.

Leyla I. Mammadova Azerbaijan State Oil and Industry University, Baku, Azerbaijan E-mail: leylaimae@yahoo.com

Ibrahim M. Nabiev Baku State University, Baku, Azerbaijan; Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan; Khazar University, Baku, Azerbaijan E-mail: nabievim@yahoo.com

Chinara H. Rzayeva Baku State University, Baku, Azerbaijan E-mail: cinararzayeva55@gmail.com Consider a boundary value problem generated on an interval $[0,\pi]$ by the Sturm-Liouville equation

$$-y''(x) + q(x)y(x) = \lambda^2 y(x) \tag{1}$$

and semiseparated boundary conditions of the form

$$y'(0) + \alpha y(0) = 0, y(0) + \lambda [\beta y(\pi) + \gamma y'(\pi)] = 0,$$
(2)

where q(x) is a real function belonging to the space $L_2[0,\pi]$, λ is a spectral parameter, α , β , γ are real numbers. This problem will be denoted by $P(\alpha, \beta, \gamma)$. In this paper, we present an asymptotic formula for the eigenvalues of the considered Sturm-Liouville operator and prove a uniqueness theorem for the solution of the inverse problem of recovering the corresponding boundary value problems from spectral data. The spectra of two boundary value problems and a certain number are used as spectral data. Note that earlier the question of recovering differential operators for separated and nonseparated boundary conditions containing a spectral parameter was studied in [2], [4]-[7], [11]-[14] and other works.

2. Spectral Data of Boundary Value Problems

We denote by $c(x, \lambda)$, $s(x, \lambda)$, solutions of equation (1), satisfying the initial conditions

$$c(0,\lambda) = s'(0,\lambda) = 1, c'(0,\lambda) = s(0,\lambda) = 0.$$

For any x function $c(x, \lambda)$, $s(x, \lambda)$, $c'(x, \lambda)$, $s'(x, \lambda)$ are entire functions (of exponential type) of variable λ . The general solution of equation (1) is written in the form

$$y(x,\lambda) = A_1 c(x,\lambda) + A_2 s(x,\lambda),$$

where A_1 , A_2 - are arbitrary constants. Substituting this function into the boundary conditions (2) and using the last relations, we obtain for A_1 and A_2 the following system:

$$\begin{cases} A_1 + \alpha A_2 = 0\\ [\lambda\beta s(\pi,\lambda) + \lambda\gamma s'(\pi,\lambda)] A_1 + [1 + \lambda\beta c(\pi,\lambda) + \lambda\gamma c'(\pi,\lambda)] A_2 = 0. \end{cases}$$

For a number λ to be an eigenvalue of a boundary value problem $P(\alpha, \beta, \gamma)$, it is necessary and sufficient that the latter system has a nonzero solution. But this system has a nonzero solution if and only if its determinant is equal to zero. Therefore, the eigenvalues of the boundary value problem $P(\alpha, \beta, \gamma)$ coincide with the roots of the equation $\Delta(\lambda) = 0$, where

$$\Delta(\lambda) = \begin{vmatrix} 1 & \alpha \\ \lambda\beta s(\pi,\lambda) + \lambda\gamma s'(\pi,\lambda) & 1 + \lambda\beta c(\pi,\lambda) + \lambda\gamma c'(\pi,\lambda) \end{vmatrix}$$

This function is called the characteristic function of the problem $P(\alpha, \beta, \gamma)$. Expanding the last determinant, we have

$$\Delta(\lambda) = 1 + \lambda \left[\beta(c(\pi,\lambda) - \alpha s(\pi,\lambda)) + \gamma(c'(\pi,\lambda) - \alpha s'(\pi,\lambda))\right].$$
(3)

Since $\Delta(0) = 1$, that $\lambda = 0$ is not an eigenvalue of the boundary value problem $P(\alpha, \beta, \gamma)$.

It is known [10, p. 47] that the functions $c(\pi, \lambda)$, $c'(\pi, \lambda)$, $s(\pi, \lambda)$ and $s'(\pi, \lambda)$ hold the following representations:

$$c(\pi,\lambda) = \cos\lambda\pi + Q\frac{\sin\lambda\pi}{\lambda} + \frac{f_1(\lambda)}{\lambda},$$

$$c'(\pi,\lambda) = -\lambda\sin\lambda\pi + Q\cos\lambda\pi + f_2(\lambda),$$

$$s(\pi,\lambda) = \frac{\sin\lambda\pi}{\lambda} - Q\frac{\cos\lambda\pi}{\lambda^2} + \frac{f_3(\lambda)}{\lambda^2},$$

$$s'(\pi,\lambda) = \cos\lambda\pi + Q\frac{\sin\lambda\pi}{\lambda} + \frac{f_4(\lambda)}{\lambda},$$

where $Q = \frac{1}{2} \int_0^{\pi} q(x) dx$, $f_1(\lambda)$, $f_4(\lambda)$ -are odd, $f_2(\lambda)$ and $f_3(\lambda)$ are even entire functions of exponential type not greater than π , square summable on the real axis. Taking into account these representations and using the Paley-Wiener theorem [8, p. 69], from (3) we obtain

$$\Delta(\lambda) = 1 - \gamma \lambda^2 \sin \pi \lambda + \lambda \left(\beta - \alpha \gamma + \gamma Q\right) \cos \pi \lambda + + \left(\beta Q - \alpha \beta - \alpha \gamma Q\right) \sin \pi \lambda + \lambda f(\lambda) + g(\lambda),$$
(4)

where $f(\lambda) = \int_0^{\pi} \tilde{f}(t) \cos \lambda t dt$, $g(\lambda) = \int_0^{\pi} \tilde{g}(t) \sin \lambda t dt$, $\tilde{f}(t), \tilde{g}(t) \in L_2[0, \pi]$. Using representation (4) and Rouche's theorem, the following theorem can be proved by a standard method.

Theorem 1. For the eigenvalues $\mu_k(k = 0, \pm 0, \pm 1, \pm 2...)$ of the boundary value problem $P(\alpha, \beta, \gamma)$ at $|k| \to \infty$, the following asymptotic formula holds:

$$\mu_k = k + \frac{A}{\pi k} + \frac{\tau_k}{k},\tag{5}$$

where $\{\tau_k\} \in l_2$,

$$A = Q - \alpha + \frac{\beta}{\gamma}.$$
 (6)

Along with the problem $P(\alpha, \beta, \gamma)$, we also consider the boundary value problem $P(\alpha, \tilde{\beta}, \gamma)$ generated by the same equation (1) and the boundary conditions

$$y'(0) + \alpha y(0) = 0,$$

$$y(0) + \lambda \left[\tilde{\beta} y(\pi) + \gamma y(\pi) \right] = 0.$$
(7)

The spectrum of this problem will be denoted by $\{\tilde{\mu}_k\}$ $(k = 0, \pm 0, \pm 1, \pm 2...)$. According to Theorem 1, this spectrum satisfies the asymptotic formula

$$\tilde{\mu}_k = k + \frac{\tilde{A}}{\pi k} + \frac{\tilde{\tau}_k}{k},\tag{8}$$

at $|k| \to \infty$, where $\{\tilde{\tau}_k\} \in l_2$,

$$\tilde{A} = Q - \alpha + \frac{\tilde{\beta}}{\gamma}.$$
(9)

The sequences $\{\mu_k\}, \{\tilde{\mu}_k\}$ and the number γ will be called the spectral data of a pair of boundary value problems $P(\alpha, \beta, \gamma), P(\alpha, \tilde{\beta}, \gamma)$.

3. The Uniqueness Theorem

Consider two more problems with separated boundary conditions. Problem P_1 :

$$-y'' + q(x)y = \lambda^2 y (0 \le x \le \pi),$$

 $y'(0) + \alpha y(0) = 0,$
 $y(\pi) = 0.$

Problem P_2 :

$$-y'' + q(x)y = \lambda^2 y (0 \le x \le \pi),$$

$$y'(0) + \alpha y(0) = 0,$$

$$y'(\pi) = 0.$$

The characteristic functions of these problems are

$$\delta_1(\lambda) = c(\pi, \lambda) - \alpha s(\pi, \lambda), \tag{10}$$

$$\delta_2(\lambda) = c'(\pi, \lambda) - \alpha s'(\pi, \lambda) \tag{11}$$

respectively.

Consider the following inverse problem.

Inverse problem B. Using the given spectral data of boundary value problems $P(\alpha, \beta, \gamma)$ and $P(\alpha, \tilde{\beta}, \gamma)$ construct the function q(x) in equation (1) and the coefficients $\alpha, \beta, \tilde{\beta}$ in the boundary conditions (2) and (7).

The following uniqueness theorem is true.

Theorem 2. Boundary value problems $P(\alpha, \beta, \gamma)$ and $P(\alpha, \tilde{\beta}, \gamma)$ are uniquely determined by their spectral data.

Proof. Given the spectra $\{\mu_k\}$ and $\{\tilde{\mu}_k\}$ boundary value problems $P(\alpha, \beta, \gamma)$ and $P(\alpha, \beta, \gamma)$, we can uniquely determine the quantities A and \tilde{A} , since, according to asymptotic formulas (5) and (8), we have

$$A = \pi \lim_{k \to \infty} k \left(\mu_k - k \right), \quad \tilde{A} = \pi \lim_{k \to \infty} k \left(\tilde{\mu}_k - k \right).$$

Then, by virtue of relations (6) and (9), the difference $\beta - \tilde{\beta}$ is found as follows:

$$\beta - \tilde{\beta} = \gamma \left(A - \tilde{A} \right).$$

Using the spectral data of boundary value problems $P(\alpha, \beta, \gamma)$ and $P(\alpha, \tilde{\beta}, \gamma)$ construct the characteristic functions $\Delta(\lambda)$ and $\tilde{\Delta}(\lambda)$ in the form of an infinite product. According to (3), (10) and (11)

$$\Delta(\lambda) = 1 + \lambda \left[\beta \delta_1(\lambda) + \gamma \delta_2(\lambda)\right], \quad \tilde{\Delta}(\lambda) = 1 + \lambda \left[\tilde{\beta} \delta_1(\lambda) + \gamma \delta_2(\lambda)\right].$$

Therefore, knowing the functions $\Delta(\lambda)$, $\tilde{\Delta}(\lambda)$ and the difference $\beta - \tilde{\beta}$, the characteristic function $\delta_1(\lambda)$ of the boundary value problem P_1 can be restored by the formula

$$\delta_1(\lambda) = \frac{\Delta(\lambda) - \tilde{\Delta}(\lambda)}{\left(\beta - \tilde{\beta}\right)\lambda}$$

Using relation (4), for this function we obtain the following representation:

$$\delta_1(\lambda) = \cos \pi \lambda + (Q - \alpha) \frac{\sin \pi \lambda}{\lambda} + \frac{1}{\lambda} \int_0^{\pi} r(t) \sin \lambda t dt,$$

where $r(t) \in L_2[0,\pi]$. By virtue of Lemma 3.4.2 in [10], for the zeros $\lambda_n^{(1)}$ (n = 1, 2, ...) of the function $\delta_1(\lambda)$ at $n \to \infty$, the asymptotic formula

$$\lambda_n^{(1)} = n - \frac{1}{2} + \frac{Q - \alpha}{\pi n} + \frac{\tau_n^{(1)}}{n}, \left\{\tau_n^{(1)}\right\} \in l_2.$$

From this formula we define the difference $Q - \alpha$ as follows:

$$Q - \alpha = \pi \lim_{n \to \infty} n \left(\lambda_n^{(1)} - n + \frac{1}{2} \right).$$

Knowing this difference, A, \tilde{A} and γ , the quantities β and $\tilde{\beta}$ are determined by the formulas

$$\beta = \gamma \left(A - Q + \alpha \right), \tilde{\beta} = \gamma \left(\tilde{A} - Q + \alpha \right).$$

We reconstruct the characteristic function $\delta_2(\lambda)$ of the boundary value problem P_2 by the formula

$$\delta_2(\lambda) = \frac{\beta \tilde{\Delta}(\lambda) - \tilde{\beta} \Delta(\lambda) - \beta + \tilde{\beta}}{\gamma \left(\beta - \tilde{\beta}\right) \lambda}.$$

From the sequences of zeros of the functions $\delta_1(\lambda)$ and $\delta_2(\lambda)$ construct the potential q(x) in (1) and the coefficient α in (2) by a well-known procedure (see, for example, [3], [9]). The theorem is proved.

It is easy to see that the proof of the uniqueness theorem also contains an algorithm for solving the inverse problem B.

References

- 1. Akhtyamov A.M. Identification Theory of Boundary Value Problems and Its Applications. Fizmatlit, Moscow, 2009 (in Russian).
- Ala V., Mamedov Kh.R. On a discontinuous Sturm-Liouville problem with eigenvalue parameter in the boundary conditions. *Dyn. Syst. Appl.*, 2020, 29, pp. 182–191.
- Freiling G., Yurko V.A. Inverse Sturm-Liouville Problems and their Applications. NOVA Science Publishers, New York, 2001.
- Freiling G., Yurko V. Recovering nonselfadjoint differential pencils with nonseparated boundary conditions. *Applicable Anal.*, 2015, 94 (8), pp. 1649–1661.
- Guliyev N.J. Essentially isospectral transformations and their applications. Annali di Matematica Pura ed Applicata, 2020, 199, pp. 1621–1648.
- Ibadzadeh Ch.G., Nabiev I.M. An inverse problem for Sturm-Liouville operators with nonseparated boundary conditions containing the spectral parameter. J. Inverse Ill-Posed Probl., 2016, 24 (4), pp. 407–411.
- Ibadzadeh Ch.G., Nabiev I.M. Reconstruction of the Sturm-Liouville Operator with Nonseparated Boundary Conditions and a Spectral Parameter in the Boundary Condition. Ukr. Math. J., 2018, 69 (9), pp. 1416–1423.
- Levin B.Ya. Lectures on Entire Functions. Transl. Math. Monogr. 150, Amer. Math. Soc., Providence, RI, 1996.
- Levitan B.M., Gasymov M.G. Determination of a differential equation by two of its spectra. *Russ. Math. Surv.*, 1964, **19** (2), pp. 1–63.
- 10. Marchenko V.A. Sturm-Liouville Operators and Applications. AMS Chelsea Publishing, Providence, RI, 2011.
- 11. Möller M., Pivovarchik V. Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications. Birkhauser, Cham, 2015.
- 12. Nabiev I.M. Reconstruction of the differential operator with spectral parameter in the boundary condition. *Mediterr. J. Math.*, 2022, **19** (4) (in the press).
- 13. Nabiev I.M., Shukurov A.Sh. Properties of the spectrum and uniqueness of reconstruction of Sturm–Liouville operator with a spectral parameter in the boundary condition. *Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb.*, 2014, **40** (Special Issue), pp. 332–341.
- Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M. Inverse problem for an operator pencil with nonseparated boundary conditions. *Dokl. Math.*, 2009, **79** (2), pp. 169–171.