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Abstract. In the article we consider the Sturm-Liouville operator with semiseparated
boundary conditions, one of which contains a spectral parameter. An asymptotic formula
for the eigenvalues of the operator under consideration is given and a uniqueness theorem
for the solution of the inverse problem of recovering the corresponding boundary value
problems is proved.
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1. Introduction

Boundary-value problems with boundary conditions depending on the spectral parameter
often arise in various fields of natural science and technology in the study of a number of
problems, the construction of systems for the protection of devices against impact, vibra-
tions of a string with a load at the end, torsional vibrations of a shaft with a flywheel at
the end, vibrations of antennas loaded with concentrated capacities and inductances, etc.
(see, for example, [1], [11] and the literature there). Inverse spectral problems associated
with problems of this type also play an important role in the study of some nonlinear
evolutionary equations of mathematical physics.
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Consider a boundary value problem generated on an interval [0, π] by the Sturm-
Liouville equation

−y′′(x) + q(x)y(x) = λ2y(x) (1)

and semiseparated boundary conditions of the form

y′ (0) + αy (0) = 0,
y (0) + λ [βy (π) + γy′ (π)] = 0,

(2)

where q(x) is a real function belonging to the space L2[0, π], λ is a spectral parameter,
α, β, γ are real numbers. This problem will be denoted by P (α, β, γ). In this paper,
we present an asymptotic formula for the eigenvalues of the considered Sturm-Liouville
operator and prove a uniqueness theorem for the solution of the inverse problem of
recovering the corresponding boundary value problems from spectral data. The spectra
of two boundary value problems and a certain number are used as spectral data. Note that
earlier the question of recovering differential operators for separated and nonseparated
boundary conditions containing a spectral parameter was studied in [2], [4]-[7], [11]-[14]
and other works.

2. Spectral Data of Boundary Value Problems

We denote by c(x, λ), s(x, λ), solutions of equation (1), satisfying the initial conditions

c(0, λ) = s′(0, λ) = 1, c′(0, λ) = s(0, λ) = 0.

For any x function c(x, λ), s(x, λ), c′(x, λ), s′(x, λ) are entire functions (of exponential
type) of variable λ. The general solution of equation (1) is written in the form

y (x, λ) = A1c (x, λ) +A2s (x, λ) ,

where A1, A2− are arbitrary constants. Substituting this function into the boundary
conditions (2) and using the last relations, we obtain for A1 and A2 the following system:{

A1 + αA2 = 0
[λβs(π, λ) + λγs′(π, λ)]A1 + [1 + λβc(π, λ) + λγc′(π, λ)]A2 = 0.

For a number λ to be an eigenvalue of a boundary value problem P (α, β, γ), it is necessary
and sufficient that the latter system has a nonzero solution. But this system has a nonzero
solution if and only if its determinant is equal to zero. Therefore, the eigenvalues of the
boundary value problem P (α, β, γ) coincide with the roots of the equation ∆ (λ) = 0,
where

∆(λ) =

∣∣∣∣ 1 α
λβs(π, λ) + λγs′(π, λ) 1 + λβc(π, λ) + λγc′(π, λ)

∣∣∣∣ .
This function is called the characteristic function of the problem P (α, β, γ). Expanding
the last determinant, we have

∆(λ) = 1 + λ [β(c(π, λ)− αs(π, λ)) + γ(c′(π, λ)− αs′(π, λ))] . (3)
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Since ∆ (0) = 1, that λ = 0 is not an eigenvalue of the boundary value problem
P (α, β, γ).

It is known [10, p. 47] that the functions c (π, λ) , c′ (π, λ), s (π, λ) and s′ (π, λ) hold
the following representations:

c (π, λ) = cosλπ +Q
sinλπ

λ
+

f1 (λ)

λ
,

c′ (π, λ) = −λ sinλπ +Q cosλπ + f2 (λ) ,

s (π, λ) =
sinλπ

λ
−Q

cosλπ

λ2
+

f3 (λ)

λ2
,

s′ (π, λ) = cosλπ +Q
sinλπ

λ
+

f4 (λ)

λ
,

where Q = 1
2

∫ π

0
q (x) dx, f1 (λ), f4 (λ)-are odd, f2 (λ) and f3 (λ) are even entire functions

of exponential type not greater than π, square summable on the real axis. Taking into
account these representations and using the Paley-Wiener theorem [8, p. 69], from (3)
we obtain

∆(λ) = 1− γλ2 sinπλ+ λ (β − αγ + γQ) cosπλ+

+(βQ− αβ − αγQ) sinπλ+ λf(λ) + g(λ), (4)

where f(λ) =
∫ π

0
f̃(t) cosλtdt,g(λ) =

∫ π

0
g̃(t) sinλtdt, f̃(t), g̃(t) ∈ L2 [0, π]. Using repre-

sentation (4) and Rouche’s theorem, the following theorem can be proved by a standard
method.

Theorem 1. For the eigenvalues µk(k = 0,±0,±1,±2....) of the boundary value problem
P (α, β, γ) at |k| → ∞, the following asymptotic formula holds:

µk = k +
A

πk
+

τk
k
, (5)

where {τk} ∈ l2,

A = Q− α+
β

γ
. (6)

Along with the problem P (α, β, γ), we also consider the boundary value problem

P
(
α, β̃, γ

)
generated by the same equation (1) and the boundary conditions

y′ (0) + αy (0) = 0,

y (0) + λ
[
β̃y (π) + γy (π)

]
= 0.

(7)

The spectrum of this problem will be denoted by {µ̃k} (k = 0,±0,±1,±2....). According
to Theorem 1, this spectrum satisfies the asymptotic formula

µ̃k = k +
Ã

πk
+

τ̃k
k
, (8)
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at |k| → ∞, where {τ̃k} ∈ l2,

Ã = Q− α+
β̃

γ
. (9)

The sequences {µk} ,{µ̃k} and the number γ will be called the spectral data of a pair

of boundary value problems P (α, β, γ), P
(
α, β̃, γ

)
.

3. The Uniqueness Theorem

Consider two more problems with separated boundary conditions.
Problem P1:

−y′′ + q(x)y = λ2y (0 ≤ x ≤ π) ,

y′(0) + αy(0) = 0,

y(π) = 0.

Problem P2:
−y′′ + q(x)y = λ2y (0 ≤ x ≤ π) ,

y′(0) + αy(0) = 0,

y′(π) = 0.

The characteristic functions of these problems are

δ1(λ) = c(π, λ)− αs(π, λ), (10)

δ2(λ) = c′(π, λ)− αs′(π, λ) (11)

respectively.
Consider the following inverse problem.
Inverse problem B. Using the given spectral data of boundary value problems

P (α, β, γ) and P
(
α, β̃, γ

)
construct the function q(x) in equation (1) and the coefficients

α, β, β̃ in the boundary conditions (2) and (7).
The following uniqueness theorem is true.

Theorem 2. Boundary value problems P (α, β, γ) and P
(
α, β̃, γ

)
are uniquely deter-

mined by their spectral data.

Proof. Given the spectra {µk} and {µ̃k} boundary value problems P (α, β, γ) and
P (α, β, γ), we can uniquely determine the quantities A and Ã, since, according to asymp-
totic formulas (5) and (8), we have

A = π lim
k→∞

k (µk − k) , Ã = π lim
k→∞

k (µ̃k − k) .

Then, by virtue of relations (6) and (9), the difference β − β̃ is found as follows:

β − β̃ = γ
(
A− Ã

)
.
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Using the spectral data of boundary value problems P (α, β, γ) and P
(
α, β̃, γ

)
con-

struct the characteristic functions ∆ (λ) and ∆̃ (λ) in the form of an infinite product.
According to (3), (10) and (11)

∆(λ) = 1 + λ [βδ1(λ) + γδ2(λ)] , ∆̃(λ) = 1 + λ
[
β̃δ1(λ) + γδ2(λ)

]
.

Therefore, knowing the functions ∆ (λ), ∆̃ (λ) and the difference β− β̃, the characteristic
function δ1(λ) of the boundary value problem P1 can be restored by the formula

δ1(λ) =
∆ (λ)− ∆̃ (λ)(

β − β̃
)
λ

.

Using relation (4), for this function we obtain the following representation:

δ1(λ) = cosπλ+ (Q− α)
sinπλ

λ
+

1

λ

∫ π

0

r(t) sinλtdt,

where r(t) ∈ L2 [0, π]. By virtue of Lemma 3.4.2 in [10], for the zeros λ
(1)
n (n = 1, 2, ...)

of the function δ1(λ) at n → ∞, the asymptotic formula

λ(1)
n = n− 1

2
+

Q− α

πn
+

τ
(1)
n

n
,
{
τ (1)n

}
∈ l2.

From this formula we define the difference Q− α as follows:

Q− α = π lim
n→∞

n

(
λ(1)
n − n+

1

2

)
.

Knowing this difference, A, Ã and γ, the quantities β and β̃ are determined by the
formulas

β = γ (A−Q+ α) , β̃ = γ
(
Ã−Q+ α

)
.

We reconstruct the characteristic function δ2(λ) of the boundary value problem P2 by
the formula

δ2(λ) =
β∆̃ (λ)− β̃∆ (λ)− β + β̃

γ
(
β − β̃

)
λ

.

From the sequences of zeros of the functions δ1 (λ) and δ2 (λ) construct the potential
q(x)in (1) and the coefficient α in (2) by a well-known procedure (see, for example, [3], [9]).
The theorem is proved. J

It is easy to see that the proof of the uniqueness theorem also contains an algorithm
for solving the inverse problem B.
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