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1. Introduction

Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain
problems in elliptic partial differential equations and calculus of variations (see [14]),
they are defined by the norm

∥f∥Lp,λ := sup
x, r>0

r−
λ
p ∥f∥Lp(B(x,r)),

where 0 ≤ λ < n, 1 ≤ p < ∞. In the theory of partial differential equations, together
with weighted Lebesgue spaces, Morrey spaces Lp,λ(Ω) play an important role. Later,
Morrey spaces found important applications to Navier-Stokes and Schrödinger equations,
elliptic problems with discontinuous coefficients and potential theory ([1]). An exposition
of the Morrey spaces can be found in the book [11].

Generalized Morrey spaces of such a kind in the case of constant p were studied in [3],
[12], [16]. In [8] the boundedness of the maximal operator, singular integral operator and
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the potential operators in generalized variable exponent Morrey spaces were proved. In
modified Morrey spaces the boundedness of the maximal operator, its commutator and
Riesz potential operator were investigated by many authors (see, for example, [2], [9]).

Let f ∈ L1
loc(Rn). As usual we define the Hardy-Littlewood maximal function of f ,

Mf , setting

Mf(x) = sup
t>0

|B(x, t)|−1

∫
B(x,t)

|f(y)|dy,

where B(x, t) denotes the open ball centered at x of radius t for x ∈ Rn and t > 0.
|B(x, t)| is the Lebesgue measure of the ball B(x, t), such that |B(x, t)| = ωnt

n and ωn

denotes the volume of the unit ball in Rn.
Maximal operators play an important role in the differentiability properties of func-

tions, singular integrals and partial differential equations. They often provide a deeper
and more simplified approach to understanding problems in these areas than other meth-
ods.

For 0 ≤ α < n, we define the fractional maximal function

Mαf(x) = sup
t>0

|B(x, t)|−1+α/n

∫
B(x,t)

|f(y)|dy.

In the case α = 0, we get M0f = Mf . The fractional maximal function is closely
related to the Riesz potential operator

Iαf(x) =

∫
Rn

f(y)dy

|x− y|n−α
, 0 < α < n.

There are considerable number of results for Riesz potentials beyond the basic frame-
work of the Lp-spaces, for example, the consideration of potentials with variable exponent
[13], potentials mapping on Lp-spaces with variable exponent [6], potentials acting on
Morrey spaces of variable exponent [5]. This list is by no means exhaustive, though gives
an idea of some of the possible variations one can consider and obtain results analogous
to those we have recorded here.

The results on the boundedness of potential operators and classical Calderón-
Zygmund singular operators go back to [1] and [17], respectively, while the boundedness
of the maximal operator in the Euclidean setting was proved in [4].

Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces was proved in H.G.
Hardy and J.E. Littlewood [10] in the one-dimensional case and to E.M. Stein in the case
n > 1.

Throughout the paper we use the letter C for positive constants, independent of
appropriate parameters and not necessarily the same at each occurrence. If A ≤ CB and
B ≤ CA, we write A ∼ B and say that A and B are equivalent.

We use the following notation. For 1 ≤ p < ∞, Lp(Rn) is the space of all classes of
measurable functions on Rn for which

∥f∥Lp
=

∫
Rn

|f(x)|pdx

 1
p

<∞,
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up to the equivalence of the norms

∥f∥Lp ∼ sup
∥g∥

Lp′≤1

∣∣∣∣∫
Rn

f(y)g(y)dy

∣∣∣∣
and also WLp(Rn), the weak Lp space defined as the set of all measurable functions f
on Rn such that

∥f∥WLp
= sup

r>0
r |{x ∈ Rn : |f(x)| > r}|1/p <∞.

For p = ∞ the space L∞(Rn) is defined by means of the usual modification

∥f∥L∞ = ess sup
x∈Rn

|f(x)|.

Let Lp,ω(Rn) be the space of measurable functions on Rn such that

∥f∥Lp,ω = ∥fω1/p∥Lp(Rn) =

∫
Rn

|f(x)|pω(x)dx

1/p

<∞, 1 ≤ p <∞,

and for p = ∞ the space L∞,ω(Rn) = L∞(Rn).

Definition 1. The weight function ω belongs to the class Ap(Rn) for 1 ≤ p <∞, if the
following statement

sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

ω(y)dy

 1

|B(x, r)|

∫
B(x,r)

ω− 1
p−1 (y)dy


p−1

is finite and ω belongs to A1(Rn), if there exists a positive constant C such that for any
x ∈ Rn and r > 0

|B(x, r)|−1

∫
B(x,r)

ω(y)dy ≤ C ess sup
y∈B(x,r)

1

ω(y)
.

The following two theorems was proved in [18].

Theorem 1. Let 0 < α < n, 1 < p < n
α ,

1
p − 1

q = α
n , αp − n < γ < n(p − 1), µ = qγ

p .

Then the operators Mα and Iα are bounded from Lp,|·|γ (Rn) to Lq,|·|µ(Rn).

Theorem 2. Let 1 < p < ∞ and −n < γ < n(p − 1), then the operator M is bounded
on Lp,|·|γ (Rn).

Definition 2. Let 1 ≤ p <∞, 0 ≤ λ ≤ n and [t]1 = min{1, t}. We denote by Lp,λ(Rn)

Morrey space, and by L̃p,λ(Rn) the modified Morrey space, the set of locally integrable
functions f(x), x ∈ Rn, with the finite norms

∥f∥Lp,λ
= sup

x∈Rn, t>0

(
t−λ

∫
B(x,t)

|f(y)|pdy

)1/p

,
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∥f∥L̃p,λ
= sup

x∈Rn, t>0

(
[t]−λ

1

∫
B(x,t)

|f(y)|pdy

)1/p

respectively.

Note that

L̃p,0(Rn) = Lp,0(Rn) = Lp(Rn),

L̃p,λ(Rn) = Lp,λ(Rn) ∩ Lp(Rn)

and if λ < 0 or λ > n, then Lp,λ(Rn) = L̃p,λ(Rn) = Θ, where Θ is the set of all functions
equivalent to 0 on Rn.

These spaces appeared to be quite useful in the study of the local behaviour of the
solutions to elliptic partial differential equations, apriori estimates and other topics in
the theory of partial differential equations.

Definition 3. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n. We denote by WLp,λ(Rn) the weak Morrey

space and by WL̃p,λ(Rn) the modified weak Morrey space, as the space of all functions
f ∈WLloc

p (Rn) with finite norms

∥f∥WLp,λ
= sup

r>0
r sup
x∈Rn, t>0

(
t−λ |{y ∈ B(x, t) : |f(y)| > r}|

)1/p
,

∥f∥WL̃p,λ
= sup

r>0
r sup
x∈Rn, t>0

(
[t]−λ

1 |{y ∈ B(x, t) : |f(y)| > r}|
)1/p

respectively.

Note that

WLp(Rn) =WLp,0(Rn) =WL̃p,0(Rn),

Lp,λ(Rn) ⊂WLp,λ(Rn) and ∥f∥WLp,λ
≤ ∥f∥Lp,λ

,

L̃p,λ(Rn) ⊂WL̃p,λ(Rn) and ∥f∥WL̃p,λ
≤ ∥f∥L̃p,λ

.

Now we define weighted modified Morrey spaces as follows.

Definition 4. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, ω be a nonnegative measurable function on
Rn and [r]1 = min{1, r}. We define weighted modified Morrey spaces L̃p,λ,ω(Rn) as the
set of all locally integrable functions f such that

∥f∥L̃p,λ,ω
= sup

x∈Rn,r>0
[r]

−λ
p

1 ∥f∥Lp,ω(B(x,r)) <∞.
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2. Maximal Operator in the Spaces L̃p,λ,φ(Rn)

In this section we study the L̃p,λ,φ-boundedness of the maximal operator M .

Theorem 3. [15] Let 1 < p <∞. Then the maximal operator M is bounded on Lp,φ(Rn)
if and only if φ ∈ Ap(Rn).

Theorem 4. Let 1 < p < ∞, 0 ≤ λ < n and φ ∈ Ap(Rn). Then M is bounded on

L̃p,λ,φ(Rn).

Proof. From the boundedness of maximal operator M on Lp,φ(Rn), we have∫
Rn

(Mf(y))
p
φ(y)dy ≤ C

∫
Rn

|f(y)|pφ(y)dy.

By the properties of Ap weights (see [7], Theorem 2.16, p. 407), we can easily see that
for any 0 < θ < 1, ψ = φ(MχB(x,r))

θ ∈ Ap(Rn), then we get∫
B(x,t)

(Mf(y))
p
φ(y)dy =

∫
Rn

(Mf(y))
p
φ(y)(MχB(x,r))

θ(y)dy ≤

≤ C1

∫
Rn

|f(y)|pφ(y)(MχB(x,r))
θ(y)dy.

As is known (see, [3], Lemma 2, p. 160), for all t > 0 and x, y ∈ Rn(
t

|x− y|+ t

)n

≤MχB(x,t)(y) ≤
(

4t

|x− y|+ t

)n

.

Therefore we obtain the following inequalities∫
B(x,t)

(Mf(y))
p
φ(y)dy ≤

≤ C

∫
B(x,t)

|f(y)|pφ(y)dy +
∞∑
j=0

∫
B(x,2j+1t)\B(x,2jt)

tnθ|f(y)|pφ(y)dy
(|x− y|+ t)nθ

 ≤

≤ C

[t]λ1 ∥f∥p
L̃p,λ,φ

+ ∥f∥p
L̃p,λ,φ

∞∑
j=0

[2j+1t]λ1
(2j + 1)nθ

 ≤

≤ C ∥f∥p
L̃p,λ,φ

[t]λ1 +


(
2λ tλ

[log2
1
2t ]∑

j=0

2(λ−nθ)j +
∞∑

j=[log2
1
2t ]+1

2−nθj
)1/p

, 0 < t < 1
2 ,( ∞∑

j=0

2−nθj
)1/p

, t ≥ 1
2

 ≤

≤ C ∥f∥p
L̃p,λ,φ

[t]λ1 +


(
C1t

λ + C2t
nθ
)1/p

, 0 < t < 1
2 ,

C
1/p
2 , t ≥ 1

2

 ≤ C[t]λ1 ∥f∥p
L̃p,λ,φ

,

which proves that M is bounded on L̃p,λ,φ(Rn). J
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In the following theorem we give the necessary and sufficient condition for the bound-
edness of the maximal operator M on the spaces L̃p,λ,|·|γ (Rn).

Theorem 5. Let 1 < p < ∞ and 0 ≤ λ < n. Then the maximal operator M is bounded
on L̃p,λ,|·|γ (Rn) if and only if −n+ λ ≤ γ < n(p− 1).

Proof. If part follows from Theorem 4, if φ(x) = |x|γ . For only if part, let 0 ≤ λ < n.

The function f(x) = χ{|x|<1}(x) belongs to L̃p,λ,|·|γ (Rn) when −n + λ ≤ γ, but the
maximal operator M of this function exists only when γ < n(p− 1). J

3. Riesz Potential Operator in the Spaces L̃p,λ,|·|γ(Rn)

In this section we give the necessary and sufficient conditions for the boundedness
of the Riesz potential operator from weighted modified Morrey spaces L̃p,λ,|·|γ (Rn) to

weighted modified Morrey spaces L̃q,λ,|·|µ(Rn).
First we give a lemma which we will use while proving our following theorem.

Lemma. Let 0 ≤ λ < n, 1 < p < ∞, −n + λ ≤ γ < n(p − 1), f ∈ L̃p,λ,|·|γ (Rn) and
define ft(x) =: f(tx), t > 0. Then the inequality

∥ft∥L̃p,λ,|·|γ
≤ t−

n+γ
p [t]

λ
p

1 ∥f∥L̃p,λ,|·|γ
(1)

holds.

Proof. Let 1 < p <∞, f ∈ L̃p,λ,|·|γ (Rn) and define ft(x) =: f(tx), t > 0. Then(
[r]−λ

1

∫
B(x,r)

|ft(y)|p|y|γdy

)1/p

= t−
n+γ
p

(
[r]−λ

1

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

=

= t−
n+γ
p

(
[tr]1
[r]1

)λ
p

(
[tr]−λ

1

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

≤ t−
n+γ
p [t]

λ
p

1 ∥f∥L̃p,λ,|·|γ
.

Therefore we get

∥ft∥L̃p,λ,|·|γ
≤ t−

n+γ
p [t]

λ
p

1 ∥f∥L̃p,λ,|·|γ
.

J

Now we give the necessary and sufficinet conditions for the boundedness of Riesz
potential operator Iα in the spaces L̃p,λ,|·|γ (Rn).

Theorem 6. Let 0 < α < n, 0 ≤ λ < n− α, 1 < p < n−λ
α , −n+ λ ≤ γ < n(p− 1) and

µ = qγ
p . Then the operator Iα is bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn) if and only

if α
n ≤ 1

p − 1
q ≤ α

n−λ .
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Proof. Sufficiency: Let f ∈ L̃p,λ,|·|γ (Rn) and α
n ≤ 1

p − 1
q ≤ α

n−λ . Then

|Iαf(x)| =

 ∫
B(x,t)

+

∫
Rn\B(x,t)

 |f(y)||x− y|α−ndy ≡ J1(x, t) + J2(x, t).

First we estimate J1(x, t). By using Hölder’s inequality we have

J1(x, t) =

∫
B(x,t)

|f(y)||x− y|α−ndy ≤

≤
−1∑

j=−∞

(
2jt
)α−n

∫
B(x,2j+1t)\B(x,2jt)

|f(y)|dy ≤ CtαMf(x). (2)

Now we estimate J2(x, t). By using Hölder’s inequality we get

J2(x, t) ≤
∫

Rn\B(x,t)

|f(y)||x− y|α−ndy ≤

≤
∞∑
j=0

(
2jt
)α−n

∫
B(x,2j+1t)\B(x,2jt)

|f(y)|dy ≤

≤
∞∑
j=0

(
2jt
)α−n ∥∥χB(x,2j+1t)

∥∥
L

p′(·),|·|γ/(1−p)

∥∥fχB(x,2j+1t)

∥∥
Lp,|·|γ

≤

≤ Ctα−
n
p |x|−

γ
p ∥f∥L̃p,λ,|·|γ

∞∑
j=0

2j(α−
n
p )[2jt]

λ
p

1 ≤ Ctα−
n
p |x|−

γ
p ∥f∥L̃p,λ,|·|γ

×

×


(
2λ tλ

log2[
1
2t ]∑

j=0

2j(α−
n−λ

p ) +
∞∑

j=log2[
1
2t ]+1

2j(α−
n
p )
)1/p

, 0 < t < 1,( ∞∑
j=0

2j(α−
n
p )
)1/p

, t ≥ 1

≤

≤ Ctα−
n
p [t]

λ
p

1 |x|
− γ

p ∥f∥L̃p,λ,|·|γ
.

Thus

J2(x, t) ≤ Ctα−
n
p [t]

λ
p

1 |x|
− γ

p ∥f∥L̃p,λ,|·|γ
. (3)

So, from (2) and (3) we have

|Iαf(x)| ≤ CtαMf(x) + Ctα−
n
p [t]

λ
p

1 |x|
− γ

p ∥f∥L̃p,λ,|·|γ
≤

≤ Cmin
{
tαMf(x) + Ctα−

n−λ
p |x|−

γ
p ∥f∥L̃p,λ,|·|γ

, tαMf(x) + Ctα−
n
p |x|−

γ
p ∥f∥L̃p,λ,|·|γ

}
.
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Minimizing with respect to t =
[
(Mf(x))−1 ∥f∥L̃p,λ,|·|γ

] p
n−λ |x|−

γ
n−λ or

t =
[
(Mf(x))−1 ∥f∥L̃p,λ,|·|γ

] p
n |x|−

γ
n we obtain

|Iαf(x)| ≤ Cmin


(

Mf(x)

∥f∥L̃p,λ,|·|γ

)1− pα
n−λ

|x|−
γα

n−λ ,

(
Mf(x)

∥f∥L̃p,λ,|·|γ

)1− pα
n

|x|−
γα
n

 .

Hence, from Theorem 5, we get∫
B(x,t)

|Iαf(y)|q|y|µdy ≤ C ∥f∥q−p

L̃p,λ,|·|γ

∫
B(x,t)

(Mf(y))
p |y|γdy ≤

≤ C[t]λ1 ∥f∥
q−p

L̃p,λ,|·|γ
∥f∥p

L̃p,λ,|·|γ
= C[t]λ1 ∥f∥

q

L̃p,λ,|·|γ
.

Therefore Iαf ∈ L̃q,λ,|·|µ(Rn) and

∥Iαf∥L̃q,λ,|·|µ
≤ C∥f∥L̃p,λ,|·|γ

.

Necessity: Let 1 < p < n−λ
α and Iα be bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn). Define

ft(x) =: f(tx), t > 0. Using inequality (1), since

Iαft(x) = t−αIαf(tx),

we obtain(
[r]−λ

1

∫
B(x,r)

|Iαft(y)|q |y|µdy

)1/q

= t−α

(
[r]−λ

1

∫
B(x,r)

|Iαf(ty)|q |y|µdy

)1/q

=

= t−α−n+µ
q

(
[tr]1
[r]1

)λ
q

(
[tr]−λ

1

∫
B(x,tr)

|Iαf(y)|q |y|µdy

)1/q

≤ t−α−n+µ
q [t]

λ
q

1 ∥Iαf∥L̃q,λ,|·|µ
.

Therefore we get

∥Iαft∥L̃q,λ,|·|µ
≤ t−α−n+µ

q [t]
λ
q

1 ∥Iαf∥L̃q,λ,|·|µ
.

Since the operator Iα is bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn), we have

∥Iαf∥L̃q,λ,|·|µ
≤ tα+

n+µ
q [t]

−λ
q

1 ∥Iαft∥L̃q,λ,|·|µ
≤

≤ Ctα+
n+µ

q [t]
−λ

q

1 ∥ft∥L̃p,λ,|·|γ
≤ Ctα+

n+µ
q −n+γ

p [t]
λ
p−λ

q

1 ∥f∥L̃p,λ,|·|γ
, (4)

where C depends on p, q, λ, γ, µ and n.
If 1

p <
1
q +

α
n−λ , from the inequality (4), ∥Iαf∥L̃q,λ,|·|µ

= 0 for all f ∈ L̃p,λ,|·|γ (Rn) as

t→ 0.
If 1

p >
1
q + α

n , from the inequality (4), ∥Iαf∥L̃q,λ,|·|µ
= 0 for all f ∈ L̃p,λ,|·|γ (Rn) as

t→ ∞. Therefore α
n ≤ 1

p −
1
q ≤ α

n−λ . J
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Corollary. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1), µ = qγ

p .

Then the fractional maximal operator Mα is bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn)

if and only if α
n ≤ 1

p − 1
q ≤ α

n−λ .

Proof. The sufficiency part follows from the inequality Mαf(x) ≤ ω
α
n−1
n Iα|f |(x). For

necessity part, let 1 < p < n−λ
α and Mα be bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn).

Define ft(x) =: f(tx), t > 0.
Since

Mαft(x) = t−αMαf(tx),

and by (1), then(
[r]−λ

1

∫
B(x,r)

|Mαft(y)|q |y|µdy

)1/q

= t−α

(
[r]−λ

1

∫
B(x,r)

|Mαf(ty)|q |y|µdy

)1/q

=

= t−α−n+µ
q

(
[tr]1
[r]1

)λ
q

(
[tr]−λ

1

∫
B(x,tr)

|Mαf(y)|q |y|µdy

)1/q

≤

≤ t−α−n+µ
q [t]

λ
q

1 ∥Mαf∥L̃q,λ,|·|µ
.

Therefore we get

∥Mαft∥L̃q,λ,|·|µ
≤ t−α−n+µ

q [t]
λ
q

1 ∥Mαf∥L̃q,λ,|·|µ
.

Since the operator Mα is bounded from L̃p,λ,|·|γ (Rn) to L̃q,λ,|·|µ(Rn), we have

∥Mαf∥L̃q,λ,|·|µ
≤ Ctα+

n+µ
q −n+γ

p [t]
λ
p−λ

q

1 ∥f∥L̃p,λ,|·|γ
, (5)

where C depends on p,q,λ,γ,µ and n.
If 1

p <
1
q + α

n−λ , from the inequality (5), ∥Mαf∥L̃q,λ,|·|µ
= 0 for all f ∈ L̃p,λ,|·|γ (Rn)

as t→ 0.
If 1

p >
1
q + α

n , from the inequality (5), ∥Mαf∥L̃q,λ,|·|µ
= 0 for all f ∈ L̃p,λ,|·|γ (Rn) as

t→ ∞. Therefore α
n ≤ 1

p −
1
q ≤ α

n−λ . J
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