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CONTROL OF HEATING PROCESS WITH FEEDBACK
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Abstract. In this work, a class of optimal control problems for a rod (plate) heating
process with feedback, when the incoming information about the state of the process is
continuously received only from its individual points, at which some temperature sensors
are placed, is investigated. The heating process itself takes place in a stove at the expense
of controlling the temperature inside the stove. The mathematical model of the controlled
process is in both cases described by a punctual loaded parabolic type equation. In the
work, we derive formulae for the gradient of the functional. Algorithms of numerical
solutions to the considered problems are proposed.
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1. Introduction

Numerous publications deal with the problems of optimal feedback control (control de-
sign) of plants (processes) with lumped and distributed parameters. The findings in the
area of feedback control systems concern mostly the lumped-parameter linear plants
obeying the systems of differential equations with ordinary derivatives [8], [12]. The
published results on the distributed-parameter systems are scarce, and they concern par-
ticular classes of problem formulations [5], [7], [8], [10], [11].
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The present paper is devoted to a class of problems of optimal feedback control of
heating of rods (plates) where the information about the process state arrives continu-
ously only from individual points where the temperature sensors are mounted. The rods
are heated in the furnace by controlling the internal temperature. Consideration was also
given to the case where the observation of rod (plate) heating is carried out at individual
points at predefined discrete time instants. In both cases, the mathematical model of
the controlled process is reduced to the pointwise loaded parabolic equation [6], [9]. The
control actions are calculated from the results of the continuous or discrete observation
of the process at the observation points at the predefined time instants.

A numerical method based on the earlier studies of the present authors is proposed
[1]-[4].

2. Problem Statement

Let homogenous rods of the length l be sequentially (or simultaneously, but independently
of each other) heated in a heating stove at the expense of the temperature ϑ(t) produced
by an external source and identical in all the heating stove. Then, the process of heating
each rod is described by the following differential equation of parabolic type:

ut(x, t) = a2uxx(x, t) + α [ϑ(t)− u(x, t)] , (x, t) ∈ Ω = (0, l)× [0, T ] , (1)

with boundary conditions

ux(0, t) = λ [u(0, t)− ϑ(t)] , t ∈ [0, T ] , (2)

ux(l, t) = −λ [u(l, t)− ϑ(t)] , t ∈ [0, T ] , (3)

where a2 = k
cρ = const > 0 is thermal conductivity coefficient; α = h

cρ and λ = h
k are

reduced coefficients of heat exchange between environment and the rod in the heating
stove along the length and at the ends of the rod correspondingly; h is heat exchange
coefficient; k is heat conductivity coefficient; c is specific heat coefficient; ρ is the density
of the material.

The initial temperature of the rods, for the sake of simplicity, is considered constant
along their lengths, but different for each rod. At that, we have some admissible set
(interval) B = [B,B] of possible values of the temperature:

u(x, 0) = b = const ∈ B , x ∈ [0, l] ,

and the density function ρB(b)of initial temperatures is given, where∫
B

ρB(b)db = 1, ρB(b) ≥ 0, b ∈ B .

The current temperature u(xi, t) , i = 1, 2..., L is measured at L points xi ∈ [0, l] of
all the rods with the help of sensors. Depending on the values of the temperature at the
sources, the current temperature ϑ(t)is assigned inside the heating stove.
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Let γi , i = 1, 2, ..., L, be weighting coefficients characterizing the importance of taking
into account the values of the temperature at the measured points, at that

L∑
i=1

γi = 1, 0 ≤γi ≤ 1 , i = 1, 2, ..., L. (4)

The value

ũ(t) =

L∑
i=1

γiu(x̄i, t) , t ∈ [0, T ],

is the current value of the “averaged” temperature of the rod according to the measured
data. This value is used to form a feedback control for the heating stove:

ϑ(t) = ϑ(t;K, γ̄) = K(t)ũ(t) = K(t)
L∑

i=1

γiu(x̄i, t) , (5)

whereK(t) is control parameter defining the temperature of the heating stove. The vector
γ = (γ1, γ2, ..., γL), in the general case, may be a function of time, but for the sake of
simplicity, we consider it to be invariable and unknown.

Taking into account (5) in (1)-(3), we obtain the boundary problem of the form:

ut(x, t) = a2uxx(x, t)+α

[
K(t)

L∑
i=1

γiu(x̄i, t)− u(x, t)

]
, (x, t) ∈ Ω = (0, l)× [0, T ] , (6)

ux(0, t) = λ

[
u(0, t)−K(t)

L∑
i=1

γiu(x̄i, t)

]
, t ∈ [0, T ] , (7)

ux(l, t) = −λ

[
u(l, t)−K(t)

L∑
i=1

γiu(x̄i, t)

]
, t ∈ [0, T ] . (8)

Problem (6)-(8) is called a pointwise loaded problem, as unknown values of the phase
variable at different points of the space variable are present in its right-hand side.

In practical applications, there may be certain technological constraints imposed on
the control parameter K(t):

K ≤ K(t) ≤ K̄, t ∈ [0, T ] , (9)

where K , K̄ are given upper and lower admissible values of the magnification constant
correspondingly.

Suppose we have the following performance criterion:

J(K, γ̄) =

∫
B

I(K, γ; b)ρB(b)db+ ε1 ∥K(t)−K0∥2L2[0,T ] + ε2 ∥γ − γ0∥2RL , (10)

I(K, γ; b) =

l∫
0

µ(x) [u(x, T ;K, γ, b)− U(x)]
2
dx, (11)
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where U(x) is given function; µ(x) ≥ 0 is given weighting function; u(x, t;K, γ; b) is the
solution to boundary problem (6)-(8) in the presence of control parameters K = K(t), γ
and of initial condition u(x, 0) = b , x ∈ [0, l]; ε1 > 0, ε2 > 0, K0 ∈ R1 , γ0 ∈ RL are
regularization parameters satisfying (4) and (9).

The case when the observation over the heating process at the points x̄i ∈ [0, l],
i = 1, 2..., Lx of the rod is carried out not continuously, but at given discrete moments
of time t̄j ∈ [0, T ] , j = 0, 1, ..., Lt, t0 = 0, t̄Lt = T , is of practical interest. The
temperature inside the heating stove is assigned according to the results of observation,
and is constant at the interval of time between any two observations, and is determined,
for example, by the formula:

ϑ(t) = Kj

Lx∑
i=1

γiu(x̄i, t̄j−1) = const, Kj = const, t ∈ [t̄j−1, t̄j) j = 1, 2, ..., Lt. (12)

It is possible to make use of the “memory” to measure the values of the temperature
at time using the formula

ϑ(t) = Kj

Lx∑
i=1

j−1∑
ν=1

γij−1u(x̄i, t̄j−1) = const, t ∈ [t̄j−1, t̄j) , (13)

where γiν are weighting coefficients of the importance of taking into account the value
of the temperature at ith point x̄i at ν

th measurement at (j − 1)th time interval, i.e. at
moments of time t̄ν , ν = 0, 1, ..., j − 1.

The control problem is reduced to seeking the finite-dimensional vector of parameters
K = (K1, ...,KLt) , γ = (γ1, ..., γLx) in case of (12), and the matrix γ = ((γij)), i =
1, ..., Lx , j = 1, 2, ..., Lt, in case of (13). For both cases, the computation given below is
not altered significantly; that is why we consider only control of type (5).

3. Formula for the Gradient of the Functional of
Problem

For the numerical solution to parametrical optimal control problem (6)-(11), i.e. for
the determination of function K(t) and of finite-dimensional vector of parameters γ, we
propose to use first order optimization methods.

From (6)-(11), taking into account the independence of the initial conditions of each
other, and therefore the independence of the solution to boundary problems (6)-(8) for
different initial conditions u(x, 0) = b ∈ B, it follows the validity of the formula:

(
gradKJ(K, γ)
gradγJ(K, γ)

)
=


∫
B

gradKI(K, γ; b)ρB(b)db∫
B

gradγI(K, γ; b)ρB(b)db

 .

That is why, in order to apply first order optimization methods, obtain formulas for
the gradient of functional (11) taking into account boundary problem (6)-(8) involving
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any admissible initial condition:

u(x, 0) = b, x ∈ [0, l], b ∈ B.

When solving problem (6)-(11) numerically with the application of standard first order
optimization procedures, at each step of the iteration procedure, we use the gradient of
the functional. With that end in view, at the current control, it is necessary to solve
loaded boundary problem (6)-(8) and the following conjugate integral-and-differential
equation:

ψt(x, t) = −a2ψxx(x, t)− α

K(t)

l∫
0

ψ(ξ, t)dξ
L∑

i=1

γi δ(x− x̄i)− ψ(x, t)

 ,
x ∈ (x̄i−1, x̄i), t ∈ [0, T ], i = 1, 2, .., L , (14)

with boundary and initial conditions

ψ(x, T ) = −2µ(x) [u(x, T )− U(x)] , x ∈ [0, l], (15)

ψx(0, t) = λψ(0, t) , x ∈ [0, T ], ψx(l, t) = −λψ(l, t) , x ∈ [0, T ], (16)

and non-local jump condition at intermediate points x̄i , i = 1, 2, ..., L, of observation

ψ+(x̄i, t) = ψ−(x̄i, t), i = 1, 2, ..., L ,

ψ+
x (x̄i, t)− ψ−

x (x̄i, t) = −λK(t)γi(ψ(l, t) + ψ(0, t)), i = 1, 2, ..., L. (17)

Theorem. The gradient of the functional in problem (6)-(8) for admissible control pa-
rameters K = K(t), γ is determined by the following formulas:

gradKJ(K, γ) =

∫
B

α l∫
0

ψ(x, t)dx
L∑

i=1

γiu(x̄i, t)−

−a2λ
L∑

i=1

γiu(x̄i, t) (ψ(0, t) + ψ(l, t))

]
ρB(b)db + 2ε1(K(t)−K0), t ∈ [0, T ] , (18)

gradγJ(K, γ) =

=

∫
B

 T∫
0

K(t)u(x̄, t)

α l∫
0

ψ(x, t)dx− λa2(ψ(0, t) + ψ(l, t))

dt
ρB(b)db+

+2ε2(γ − γ0), (19)

where u(x, t) = u(x, t;K, γ; b), ψ(x, t) = ψ(x, t;K, γ; b) are the solutions to the direct
and conjugate boundary problems (6)-(11) and (14)-(17) correspondingly at given initial
admissible condition u(x, 0) = b.
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4. Numerical Scheme of Solution to the Problem

Formulas (14)-(17) for the gradient of the functional of problem (6)-(11) can be obtained
using methods of grids [4] or method of lines over time for reducing the initial problem to
an optimal control problem with respect to a system of ordinary loaded differential equa-
tions involving non-local boundary conditions [2]. Then, applying necessary optimality
conditions obtained in the work [1] to these problems, and passing to limit when the step
of discretization over time tends to zero, we can obtain formulas (14)-(17). Below, we
propose to use method of lines to numerically implement the iteration method of gradient
projection, namely, to solve the boundary problems: direct (6)-(9) and conjugate (14)-
(17). To solve the optimal control problem for the loaded system of differential equations
involving non-local boundary conditions, we use the numerical method proposed in the
works [1], [2].

In the domain Ω, introduce the lines ts = sht, s = 0, 1, ..., Nt , ht = T/Nt and
notations us(x) = u(x, sht) , Ks = K(sht), s = 0, 1, ..., Nt .

Approximate boundary problem (6)-(8) by a boundary problem with respect to the
following loaded system of Nt ordinary differential equations involving non-local bound-
ary conditions:

a2u′′s (x)− (
1

ht
+ α)us(x) +

1

ht
us−1 + αKs

L∑
i=1

γius(x̄i) = 0, (20)

u′s(0) = λ

[
us(0)−Ks

L∑
i=1

γius(x̄i)

]
,

u′s(l) = −λ
[
us(l)−Ks

L∑
i=1

γius(x̄i)

]
, s = 1, 2, ..., Nt,

(21)

u0(x) = b ∈ B , x ∈ [0, l]. (22)

Target functional (11) is approximated, for example, by the formula

I(K, γ; b)=

l∫
0

µ(x) [uNt(x)−U(x)]
2
dx+ε1 ht

Nt−1∑
s=0

(Ks −K0)
2+ε2

L∑
i=1

(γi − γoi)
2. (23)

The obtained optimal control problem lies in determining (Nt+L) dimensional vector
of parameters (K, γ) = (K1, ...,KNt , γ1, ..., γL). In order to solve this problem using
gradient projection method, give formulas of the gradient of functional (23):

grad I(K, γ; b) =

(
∂I

∂K1
, ...,

∂I

∂KNt

,
∂I

∂γ1
, ...,

∂I

∂γL

)
.

Conjugate boundary problem (14)-(17) is also approximated with the application of
method of lines by loaded second order ordinary differential equations involving non-local
boundary conditions

a2ψ′′
s (x)− (

1

ht
− α)ψs(x) +

1

ht
ψs+1(x)− αKs

l∫
0

ψs(x)dx
L∑

i=1

γiδ(x− x̄i) = 0, (24)
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ψ′
s(0) = λψs(0) , ψ′

s(l) = −λψs(l) ,

ψ′+
s (x̄i)− ψ′−

s (x̄i) = −λKs(ψs(l) + ψs(0)), i = 1, 2, ..., L, (25)

which are solved successively from s = Nt − 1 to s = 1 provided that

ψNt(x) = −2µ(x) [uNt(x)− U(x)] , x ∈ (0, l).

Then, the components of the gradient of the functional of problem (20)-(23) are
determined by the approximation of formulas (18) and (19) in the following way:

dJ

dKs
= ht

L∑
i=1

γi

∫
B

us(x̄i)
α l∫

0

ψs(x)dx− λa2 (ψs(0) + ψs(l))

 db+
+2ε1(Ks −K0), s = 1, 2, .., Nt,

dJ

dγi
= ht

Nτ∑
s=1

Ks

∫
B

us(x̄i)

α l∫
0

ψs(x)dx− λa2 (ψs(0) + ψs(l))

 db+
+2 ε1 (γ − γ0), i = 1, 2, ..., L.

The other specific character of these boundary problems is point wise loading of
equations (20) and integral loading of equations (24), as well as the presence of non-local
boundary conditions (21) and (25). In the work [4], for the solution to such problems, a
numerical solution method is proposed. It is based on the shift of boundary conditions,
for example, from left to tight successively from point x = 0 to points x̄1, ...., x̄L, x = l,
and as a result we obtain (L+1)n (where n is the order of the system) algebraic equations
with respect to (us(x̄1), ..., us(x̄L), us(l)). After solving this system, the initial boundary
problem is reduced to a Cauchy problem that is solved from right to left. Analogical
approach is proposed in [1] for integrally loaded ordinary differential equations involving
non-local boundary conditions.

Note that the statement of the optimal feedback control problem and the approach
to its solution given above can be extended onto other classes of optimal control problem
with respect to systems with distributed parameters, described by other types of partially
differential equations.

5. Results of the Numerical Experiments

We present the results of the numerical experiments that were obtained at solving the
problem of feedback control of rod heating for the following data: rod length l = 1; heating
time T = 5; the coefficient of thermal conductance a = 1; and the coefficient of boundary
heat transfer λ = 0, 01. Taking into consideration the symmetricity of heating along the
rod, the points of temperature measurement were x̄1 = 0, 2 , x̄2 = 0, 4 ,, that is, L = 2.
The permissible upper value of the control coefficient is K̄ = 6, 5, the lower one, K = 0 ;
the desired final value of the rod temperature U(x) = 100 and µ(x) = 1 , x ∈ [0 ; 1].
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In the calculations, the set of permissible initial temperatures was varied as follows:

B1 = [20 ; 21] , B2 = [20 ; 22], B3 = [20 ; 26], B4 = [20 ; 28] ,

the sets were sampled with the step 0, 5, the density function ρB(b) was taken in the
calculations as uniformly distributed, that is, ρB(b) = 1

/
(B̄ −B). The weight coefficients

were taken equal to γi = 0, 5 , i = 1, 2, and no optimization was carried out with
respect to them, the regularization parameters were K0 = 3, 0 , ε = 0, 005. Under these
conditions, exact solution of the control problem is not known and cannot be established
analytically.

For approximation of the direct (6)-(8) and conjugate (14)-(17) problems by a system
of loaded differential equations with ordinary derivatives, the method of lines with the
step τ = 0, 02 was used. At each time layer s, s = 1, ...,m, the loaded ordinary differential
equation with nonlocal conditions obtained with the use of the method of [4] was reduced
to the Cauchy problems solved by the fourth-order Runge-Kutta method with the step
h = 0, 04. The precision of solution of the problem of optimal control by the method of
gradient projection as defined by the variation of the functional over two last iterations
was δ1 = 0, 01,, that of one-dimensional optimization, δ2 = 0, 001.

In the iterative optimization process, different values were taken as the initial approxi-
mation for K(t). The calculation demonstrated that the results obtained are independent
of the initial approximation.

The table compiles the results of solving the problem of optimal control K(t) for
various ranges of the set of initial rod temperatures Bi, i = 1, 2, 3, 4. Presented are the
optimal values of the coefficients controlling the feedback with the step ∆t = 0, 5. The
corresponding optimal values of the functional J∗

Bi
are shown in the next to last column;

and the last column shows the maximal over the rod length relative deviations of the
determined rod temperatures from the desired temperature U(x) = 100, that is,

Ri = max
x∈[0,1]

|u(x, T )− U(x)|
/

|U(x)|

for different ranges of the initial rod temperatures Bi, i = 1, 2, 3, 4..
As can be seen from the table, with an increase in the range of possible initial temper-

atures of the rods, their reduction to the desired temperature by averaged control of the
furnace temperature is complicated, that is, as would be expected, in this case heating
controllability worsens.

Table

t 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 J∗ Ri

K∗
B1 (t) 1,94 2,46 2,97 3,48 3,99 4,50 5,02 5,53 6,04 6,50 0,002 0,0023

K∗
B2 (t) 1,86 2,37 2,88 3,39 3,94 4,41 4,92 5,43 5,94 6,50 1,89 0,0048

K∗
B3 (t) 1,69 2,20 2,70 3,21 3,71 4,22 4,72 5,23 5,73 6,24 4,69 0,12

K∗
B4 (t) 1,61 2,11 2,61 3,11 3,62 4,12 4,62 5,13 5,63 6,14 5,05 0,148
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6. Conslusions

The above approach to the feedback control systems for the distributed-parameter plants
can be extended to the case where the processes are described by other classes of boundary
problems. Other types of observations (discrete, time interval, or their combinations) may
be considered as well. This approach can be used in the control systems of the processes
described by the distributed- parameter systems.
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