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Abstract. Quadrature formulas for simple-layer and double-layer potentials are estab-
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Keywords: quadrature formulas, simple-layer potential, double-layer potential, Hankel
function, curvilinear integral, Lyapunov curve

Mathematics Subject Classification (2020): 45E05, 31B10

1. Introduction

As is known, the problems of seeking for a solution of boundary value problems for the
Helmholtz equation Au+k?u = 0 in two-dimensional space in the form of combination of
simple-layer and double-layer potentials are reduced to the curvilinear integral equation
(see [2]) depending on the operators

(Sp) () = 2 / (r, y) p(y)dL,, == (z1, 1) € L, (1)
L
and
o) @) =2 [ D pgyar,, o= o) e L, 2)

where A is a Laplace operator, k is a wave number with Imk > 0, L C R? is a simple
closed Lyapunov curve, p(y) is a continuous function on the curve L, v(y) is an outer unit
normal at the point y € L, &(z, y) is a fundamental solution of the Helmholtz equation,
i.e.

Ln 2 for k=0,

a1
Bz, y) = § 2 7
{4Hé” (klz—yl) for k#0,

Elnur H. Khalilov
Azerbaijan State Oil and Industry University, Baku, Azerbaijan
E-mail: elnurkhalil@mail.ru



16 Quadrature formulas for some classes of curvilinear integrals

where Hél) is a zero degree Hankel function of the first kind defined by the formula
HY (2) = Jo (2) +1i Ny (2),

B © (_1)m 2\ 2m
So@)= 2 (m!)? 3)

m=0

is a Bessel function of zero degree,

No (2) :% (lng—FC’) Jo (2) + 3 (i;) ((2::1 (g)zm
m=1 -

is a Neumann function of zero degree (see [3]), and C' is an Euler’s constant.

Note that it is impossible in many cases to find an exact solution of the above integral
equations. Therefore, there is an interest in the study of approximate solutions of these
integral equations by the collocation method, and for this, you first need to construct
quadratic formulas for simple-layer and double-layer potentials. It should be noted that
in [9], the quadratic formulas for simple-layer and double-layer logarithmic potentials
(i.e. for k = 0) have been obtained, and in [4], [5], cubature formulas for simple-layer and
double-layer acoustic potentials have been constructed. Besides, based on these quadra-
ture and cubature formulas, the justification of collocation method for integral equations
of boundary value problems for the Helmholtz equation has been given in [1], [6], [8],
[10]. This work deals with the construction of quadrature formula for the integrals (1)
and (2) when k # 0.

2. Quadrature Formula for the Integral (1)

Let the curve L be defined by the parametric equation z (t) = (x1 (t) ,x2 (t)) ,t € [a,b].
Let’s divide the interval [a,b] into n > 2Mj (b — a) /d equal parts: ¢, = a + W,

p = 0,n, where My = m[a%]\/(a:’l (1) 4 (2, (t))* < 400 (see [11, p. 560]) and d is a
tela,

standart radius (see [12, p. 400]). As control points, we consider x (7,), p = 1,n, where
T, =a+ %(fp—l). Then the curve L is divided into elementary parts: L = UZ:I Ly,
where L, = {x () : tp_1 <t <tp}.

As is known (see [9]),

(1) ¥p € {1,2,...,n}: rp(n) ~ Ry(n), where r,(n) = min{ |z (7,) — = (tp—1)] ,
|z (tp) — 2 (1p)| }, Rp (n) = max{ |z (7)) — 2 (tp,-1)| , [& (tp) — 2 ()| }, and the expres-
sion a(n) ~ b(n) means C; < Zg:; < C5, where C7 and C5 are positive constants
independent of n.

(2) Vpe{l,2,...,n}: R, (n) < d/2;

(3)Vp,je{l,2,...,n}:7rj(n) ~r,(n);

(4) r(n) ~R(n) ~ %, where R (n) = max R, (n), v (n) = min r, (n).

=1,n =1,n
In the sequel, we will call this kind of givision a division of ihe curve L into "regular”

elementary parts.
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Proceeding as in the proof of Lemma 2.1 in [7], we can prove the validity of the
following lemma.

Lemma 1. There exist the constants C, > 0 and Cf > 0, independent of n, such that
forVp,j €{1,2,...,n}, j#p, and Vy € L; the following inequalities hold:

Coly—z(mp)| <z () — 2 (mp)| < C1 ly =z ()]

Denote by C' (L) a space of all continuous functions on L with the norm ||p|| =
max |p (x) |, and introduce for the function p(z) € C (L) a modulus of continuity of the
[IS

form -
w(p, §) = 6supw(@’ T), 6 >0,
T>6 T

where W(p, 7) = max [p(z) — @(y)|.

lz—y|<T
z,yeL
Let )
)
@n(x7 y) = ZH(S}T)l (k |(E - y|)7 x,y € Lv x 7& Y,
where
H{) (2) = Jon (2) + i Now (2),
n m
N (7 e
Ton ()= 2, (e 3)
and

Nown (2) :% (mg +c) Jon (2) + Xn: (i ;) (_(;).)2“ (%)Qm'

Theorem 1. Let L C R? be a simple closed Lyapunov curve of order 0 < a < 1 and
p € C(L). Then the expression

(500) (2 () = 20 S 0 2 (1), (1) et (1) + (0 ()P (2 7))

J ;p

is a quadrature formula at the control points x (1,), p = 1, n, for the integral (1), and
the following estimates hold:

max [(Sp) (x (7)) — (Sup) (& ()] < M <w (o, 1/m) + Il i) for 0<a<1,

p=1,n n

mas [(59) (2 (1) = (Su0) & (7)) < M (1 (90 1/0) 4 Dol 5 ) for =1,

p=1,n

Hereinafter M denotes a positive constant which can be different in different inequal-
ities.
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Proof. 1t is not difficult to see that

(Sp) (2 (7)) — (Sup) (z (7)) = 2 / & (x (7). ) p(y) dLy+

+2_Z (@@ (1), y) = P (2 (1), 2 (75)) p (y) dLy +
J#p '
+2) ; P (z(7p), 2 (73)) (p(y) — p(2(75))) dLy +
j=1 "L
J#p

+2 - /tAj Dy (x(TP)’ 'r(Tj)) X
=

J

< (V@0 + @)~ @t () + (@h(m)?) o (el i

Let’s denote the terms in the last equality by AT (x (7)), k% (x (1)), hE (z (7)) and
hy (x (1)), respectively.
It is evident that

= klz -y
o e =l = |3 (o = (15 )" <
>, (|k| diamL)*™
SZM:MM Vx,yGL, (3)
= 4m(m!)
and
i m 1) (_1)m+1 <k|$—y|)2m -
m=1 l:ll (m!)2 2 -
2 (1) (k| diamL)*™
< —_ _— = .
S (zl Lol vy e 0
m=1 =1
Consequently,
|P(z, y)| < M |Infz —y[|, Ve,y€L, z#y. (5)

Then, using the formula for the curvilinear integral, we obtain

7 (2 () <2 ol [ 1802 (), )] dLy <

p

R(n)
<M ||puoo/0 | dr < M ||pll, R (n) n R (n)].
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Let y € L; and j # p. Taking into account Lemma 1, we have
2 () = yl* = |2 (7p) — & (7)"] = [l2 () =yl — |2 (7p) — 2 (7;)]]

x (|2 () =91 + 2 () =9l fo (1) =2 (1) + e+ [ () = (7)) <

< My |z (ry) — o |2 () — 9" < MqR (n) (diamL)"" (6)
and
el (e 2 (o ) =
I (k |z (7) — ) — In (k|2 () — 2 ()] ]1 e
(g 2 — 2 ) = e ()~
= (” [z (1) — 4] )’S
(e ) R(n)

=| (”xm = |)‘<M|m<Tp>—y|’ @

)
where ¢ € N. Then, by the inequalities (3), (4), (6) and (7), we obtain

1@ (x(1p), y) = @ (x(7p), 2 (13))] <

Si ,g ((;11'); ((klx(Tg)—ZH)Qm <k|x(7p)2—x(7j)>2m> .
+217r‘<1nk|”’“(7p)2—$(77‘)| +C> y
X mii:() )™ ((klx(T;) y>2m_ (klx(Tp)2—$(Tj)|)2m> N
to ((n (ke (1) = yl) = In (ko (7) — 2 (7)] i) )) (ka;(2) y|)2m X
—% il (i }) )m+1 ((klx(rg)—M)Qm_ (kx(Tp)Q_x(Tj)>2m> )

Z |k|>™ (diamL)*™ "
4mm! (m—1) !

Z k™ dzamL)zm !

+MR (n) |In(k|z (1p) — x (15)] Tt (m—1) |

MR (n) (|k| diamL)*™
@ () =y ~ Z am (m1)?

1\ |k*™ (diamL)*™™" MR (n)
+ME(n Z<Zl>|4mn"f' m)l) <|1:(( '

m=1 \I=1 7p) =Yl
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Besides, in view of the inequalities

e} 2m 2m
S T e -y M

Jo (k |z — — Jon (klz— < , Vx,y €L,
|Jo (K |z —yl) 0, (klx y|)\—m:n+1 4m(m!)2 =t ! T,y
and
[No (k |z —y|) — Nou (k |z —yl)| =
2 k|
=2 [ HE2 o Gkl o) o Gkl o) +
S N1 KT e —yP" M Iz -y
+ 7 S ) anyELa
3 () Wl
we have
D (2 (1p), 2 (7)) — P (x (1), (75))] <
_ Ml (r) — = (m)l] _ o
- (n+1)! T (n+1) ! |z (rp) — yl
Then we get

D (x(7p) 5 y) = Pn (2 (1), (1)) <[P (2 (1), y) = P (2 (7p) , 2 (75)) | +

M 1
10 (5) 2 () = @0 (2 (7). ()] < oy = (RO + o )

Consequently,

diam L
3 o () < M Dol (R + gy ) [

<M Dol (R0 + gy ) RO

From the inequality (5) it follows that the integral

/ @ (2, y)| dL,
L

converges as an improper integral and
/ |® (z, y)| dL, < M, Vx € L.
L
Then from the inequalities (8) and (9) we obtain

/|¢ v, )| dL, </\¢ v, )| dL, +/|a5 2, y) — By (2, y)| dLy <

M
§M+W/L|ln|x—y\|dLySM7 Vo e L, VneN.

(8)

9)
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As a result, taking into account Lemma 1, we obtain
5 o ()] < Mes (0 B () [ 180 (2 (7)) dLy < Moo (5, R(0).

Obviously,

W (2 (£)) + (@ (1) = /(@4 (7)) + () (7))

Let y € L; and j # p. By Lemma 1 and the inequalities (3) and (4), we have

. L 2m
(Kl diamL)™ _ ) e N,

o (ki (1) = 2 ()] < 32 =L E— <

m=0

and
|N0 n(k |x(7'p — (T )

k(z(my) — - 1 |k|dzamL)2m
£ lrn) s (;) e

m=1

2M,
<
m

2M,
<
™

P07 Z o m)) c‘ My < Mz (r) —ll, YneN.

Consequently,
P (2 (1) 2 (75))] < M |In |z (7p) —yll, VneN.

Hence it follows that

1 (@ ()] < M [loll, Z/ ), ()] dt <
J#p

< ol Z [, 0@ laLy <

J#p

< ol Z/ lnfz (1) ~ ol dL, <

J#p

< M lpllog / I fz (7)) = yl| dLy < M|lpll (R ()"

Finally, summing up the estimates obtained for the expressions h (x (T, )) h (z (T,

< M(R (n))a, vVt € [tj_l,tj] .

»)))

hy (x (1p)) and A} (z (7)) and taking into account the relation R(n) ~ =, we get the

’I'L,

validity of Theorem 1.

<
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3. Quadrature Formula for the Integral (2)

Now let’s construct the quadrature formula for the integral (2). It is not difficult to

show that
iﬁn@w):i(a%m%w—M)+thMku—mn
v (y) 4 ov (y) ov (y) ’
where
OJon (klz—yl) ()RR | =y
) WTh V(y))mzl 22m=1(m —1) Im!
and

—
ov (y) T +C

Mo fble =) _ 2 (,, e .

) AJon (k |z —yl)
v (y)

2(y—=x,v
20—y W) g ke -yl +
7 |z —y
n m 1 (_1>m+1 ka |fL' _ y|2m72
+(y—x,l/(y))z (Zl> 22m=1(m —1) Im!
m=1 =1

n
Let’s divide the curve L into regular elementary parts: L = |J L. Then the following
p=1
theorem is true.

Theorem 2. Let L C R? be a simple closed Lyapunov curve of order 0 < o < 1 and
p € C(L). Then the expression

(up) o (7)) = 2020 57 22 S fiat (1)) 4 (0 ) o 0 )
j=1 !
J#p

is a quadrature formula at the control points x (1,), p = 1, n, for the integral (2), and
the following estimate holds:

Inn
s [(0) (2 (1) = (Kop) & (7)) < 01 (1 (5, 1/0) + ol ).
Proof. 1t is not difficult to see that

() (o 1) = (o) (o)) =2 [ ST ) e
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+2§ZL/ P T (o (4) = p o () +
J;ﬁp
[ 0D, (x(1,), (1;))

+23‘2221 tj—1 Ov (2(7)) ’
J#P

Denote the terms in the last equality by 07 (z (7)), 0% (z (7)), 05 (z(

0% (x (7)), respectively.
It is easy to calculate that

0% (z,y) (3Jo (klz—yl)  , ONo(k|z y)) ’

Tovly) A\ ) T v
where
9Jo (ke —yl) _ = i e
ov (y) y—av( z:: 22m Fim—1)!m!
and
ONo (k|z —y[) _
v (y)
_2(, klz—yl OJo (klz —yl) | 2 (y—a,v(y)) o
=2 (it e o) SRR rlo—y? oo

o0 m 1 (_1)m+1 ka |fI: _ y|2m72
—&-(y—x,u(y)); (;J T 1) 1T
Denote by 6 (a, b) the angle between the vectors aand b. As (see [12, p.403])

jcosf (y —, v (y))] < Mo —y|° (11)
we have
0 (klz — y|) |K[>™ (diamL)*™ >
— < |r— — <
P | < etttz ijml ST
<M |z —y|*t! (12)
and
ANy (k |z — 1
’0<|xngﬂi p =y e =yl s e -y ) (13)
v (y) |z —y
Consequently,
0P (z, y) M
’ ov (y) : |z —y' Veye L, ©#y. (19)
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Then, taking into account the formula for the curvilinear integral, we obtain

R gr o
107 (2 (1p))] < M lpll /0 —ima <M pllee (B (n))"

Let y € L; and j # p. From Lemma 2.1 and the inequality (11) it follows that
((y =z (), v () — (@ (7)) =2 (), v (z ()] = (y — = (7)), v (¥)] +

+(@ (1) =2 (1), v (y) —v (@ (7)) £ M |y —z(1)] (R(n))". (15)
Then, by the inequality (6), we obtain

OJo (k| (mp) —yl) 9o (k |z (1) —$(Tj)|)’ <
v (y) v (x (75)) B
<y - (5). v ) ~ 2 ()~ 2 (7). Z s
< k[ |[a (1) — @ (1) "2 = | (1) =y
+|(1’(Tj)—x(Tp)»V(x(Tj)))‘ Z ‘ 227n—1( _1) Im! <
<M=t ROy 3 SR
|k[*™ (diamL)*™* N
+M |y — (1) R(n) Z P (= 1) 17 <M ly—a(r)| (R(n)*.  (16)

m=1

Besides, from Lemma 1 and the inequalities (11) and (15), we have

(y—a(m),vy) () —x(m), viz(m))|

@ (1) — oI’ @ (1) = (7)”

(=2 (m)v W) (Jo(r) =2 (@) = |z (5) o)
2 (1) =y | (1) — & (7)|”

(y—a(r), v(y) = (@(m) —a(r), v(a (n)))‘ B

| (1) = (7)]* B

+

_|_

o R0 @@
|z (Tp)—y|2 “ () —yl

Then, taking into account the inequalities (3), (7), (12), (13), (15) and (16), it is not
difficult to show that

ONo (k|2 (1p) —yl) _ ONo (kx (1) — 2 (75)]) R(n) (R (n))"
v (y) O (x (75)) ’ =M ( |z (1) —y| ™ Tl - yl) '




E.H. Khalilov 25

As a result, we have

‘345(17(%),1/) 0P (z(1p), a (1)) | _ 0 Rm)  (R(n)”
- @ (mp) =y (m) =yl )

v (y) ov (z (73))

Also, by the inequality

09 (z(1p), x(15)) 0Py (z (1), = (7))
’ o (x (7)) @) | Jem) gl )
we get
’8@ (@ (), y) 0Py (2 (7p), x (1)) <
ov (y) ov (z (15)) -
<M< R() (RO 1 )
|z (1p) — Y lz(mp) =yl |z (rp) —y| "l
So,

105 (2 (7p))] <

diam L diam L diam L
dr dr 1 dr
<M lpll R(ﬂ)/ P +(R(n))a/ *+f,/ — | <
r(n) T r(n) T 2 Jr(n) T

<M Dol (R RG]+ )

Let y € L; and j # p. From Lemma 1 and the inequalities (14) and (17) it follows

e 0B, (2 (r,) ¢ (7)) | _ |0 (x(r,). (7))
‘ 9 (& (7)) <‘ i) |
(2(). 2 () 0P (o(), 2 (7))
*’ v (z (1)) () |-
< M — T lea < M —> vneN. (18)
() — () Ja ) — gl o nl e — )
Then we have
57 (@ ()] < 20 (p, R (n 2n ij)( )| 4z, <
J;ﬁp
08, (). 5 (1)
gm(p,R(n))/L s, <
LZ/
< Mw(p,R(n / i) e < Me (R ().
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Besides, taking into account Lemma 1 and the inequalities (10) and (18), we obtain

\ 08, (1), (7))
163 (@ ()] < Mlpll. Z / (TJ_)) ‘dté
J;ﬁp
< Mol Z / O ¢ ;5)( ))‘dLy<
J#p
< Ml (R0 [ |22 e Dar, <
< Mlloll., /W 1 < Ml (R

Finally, summing up the estimates obtained for the expressions 67 (z (7)), 05 (z (7)),
6% (x (7)) and 6% (z (7)), and taking into account the relation R (n) ~ 1, we complete
the proof of Theorem 2. <
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