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Abstract. In the paper, we consider a fourth-order operator-differential equation on the
entire axis, the main part of which has a multiple characteristic, and we introduce the
concept of its ”smoothly” regular solvability. We find exact values of the norms of in-
termediate derivatives operators in a Sobolev-type space and indicate their connection
with the conditions for the solvability of the equation under study. Note that the condi-
tions found for ”smoothly” regular solvability are sufficient and are imposed only on the
operator coefficients of the operator-differential equation under consideration.
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1. Introduction

Let A be a self-adjoint positive-definite operator in a separable Hilbert space H. Denote
by Hθ the scale of Hilbert spaces generated by the operator A, i.e.

Hθ = Dom
(
Aθ
)
, θ ≥ 0, (x, y)θ = (Aθx,Aθy), x, y ∈ Dom(Aθ).

Consider a fourth-order operator-differential equation of the form

P

(
d

dt

)
u(t) ≡

(
− d

dt
+A

)(
d

dt
+A

)3

u(t)+
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4 Conditions for the existence of smooth solutions

+

3∑
j=1

Aju
(4−j)(t) = f(t), t ∈ R = (−∞,+∞), (1)

where Aj , j = 1, 2, 3, are linear, generally speaking, unbounded operators in H, f(t) ∈
W 1

2 (R;H), u(t) ∈ W 5
2 (R;H). Here by Wm

2 (R;H), for integers m ≥ 1, we mean the
Hilbert space (see [18])

Wm
2 (R;H) =

{
u(t) :

dmu(t)

dtm
∈ L2(R;H), Amu(t) ∈ L2(R;H)

}
with the norm

∥u∥Wm
2 (R;H) =

(∥∥∥∥dmudtm

∥∥∥∥2
L2(R;H)

+ ∥Amu∥2L2(R;H)

)1/2

,

where L2(R;H) denotes the Hilbert space of vector-functions f(t), defined in R, with
values in H, and for which

∥f∥L2(R;H) =

(∫ +∞

−∞
∥f(t)∥2H dt

)1/2

< +∞.

The derivatives are understood in the sense of the theory of distributions (see [18]).

Definition 1. If the vector-function u(t) ∈W 5
2 (R;H) satisfies equation (1) for all t ∈ R,

then we will call it a smooth regular solution of the first order to equation (1).

Definition 2. If for any f(t) ∈W 1
2 (R;H) there exists a smooth regular solution of the

first order to equation (1), satisfying the inequality

∥u∥W 5
2 (R;H) ≤ const ∥f∥W 1

2 (R;H) ,

then equation (1) will be called ”smoothly” regularly solvable.

In this paper, we find sufficient conditions imposed on the operator coefficients of
equation (1), which ensure its ”smoothly” regular solvability. At the same time, we
find the exact values of the norms of intermediate derivatives operators in a Sobolev-
type space, and indicate their connection with the conditions for the ”smoothly” regular
solvability of equation (1).

As is known, quite a lot of works are dedicated to the study of various issues on the
solvability of operator-differential equations (see, for example, [1], [9], [13], [14], [19], [20],
[24]-[26] and references there). Over the past 20 years, interest in operator-differential
equations of the second and fourth orders has greatly increased (see, for example, [2], [7],
[8], [10], [11], [17], [21]-[23], [28] and references there), since such equations have a specific
application. But, unfortunately, the issues on solvability of operator-differential equations
with a multiple characteristic have been considered relatively little (see, for example, [3]-
[5], [12], [15], [16]), although from the application point of view such equations are also
of interest and occur, in particular, in problems on the stability of plates made of plastic
material (see, for example, [27]). It should be noted that the issue of existence of a unique
solution u(t) ∈ W 4

2 (R;H) for any f(t) ∈ L2(R;H) for equation (1) was studied in [12].
A similar problem on the semi-axis was considered in [4].
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2. Main Results

Throughout the work, L(X,Y ) is traditionally understood as the set of linear bounded
operators operating from a Hilbert space X to another Hilbert space Y .

The following theorem holds.

Theorem 1. Let the operators Aj ∈ L (Hj ,H) ∩ L (Hj+1,H1) , j = 1, 2, 3. Then the
operator P , operating as follows

Pu(t) ≡ P (d/dt)u(t), u(t) ∈W 5
2 (R;H),

is bounded from the space W 5
2 (R;H) into the space W 1

2 (R;H).

Proof. Let us first take the following notation:

P0u(t) ≡ P0(d/dt)u(t) ≡
(
− d

dt
+A

)(
d

dt
+A

)3

u(t), u(t) ∈W 5
2 (R;H),

P1u(t) ≡ P1(d/dt)u(t) ≡
3∑

j=1

Aju
(4−j)(t), u(t) ∈W 5

2 (R;H).

For any u(t) ∈W 5
2 (R;H) the inequality holds

∥P0u∥2W 1
2 (R;H) =

∥∥∥∥−d4udt4 − 2A
d3u

dt3
+ 2A3 du

dt
+A4u

∥∥∥∥2
W 1

2 (R;H)

=

=

∥∥∥∥−d5udt5 − 2A
d4u

dt4
+ 2A3 d

2u

dt2
+A4 du

dt

∥∥∥∥2
L2(R;H)

+

+

∥∥∥∥−Ad4udt4 − 2A2 d
3u

dt3
+ 2A4 d

2u

dt2
+A5u

∥∥∥∥2
L2(R;H)

≤

≤

(∥∥∥∥d5udt5
∥∥∥∥
L2(R;H)

+

∥∥∥∥2Ad4udt4
∥∥∥∥
L2(R;H)

+

∥∥∥∥2A3 d
2u

dt2

∥∥∥∥
L2(R;H)

+

∥∥∥∥A4 du

dt

∥∥∥∥
L2(R;H)

)2

+

+

(∥∥∥∥Ad4udt4
∥∥∥∥
L2(R;H)

+

∥∥∥∥2A2 d
3u

dt3

∥∥∥∥
L2(R;H)

+

∥∥∥∥2A4 du

dt

∥∥∥∥
L2(R;H)

+
∥∥A5u

∥∥
L2(R;H)

)2

.

Using the intermediate derivatives theorem [18]∥∥∥∥Aj d
5−ju

dt5−j

∥∥∥∥
L2(R;H)

≤ cj ∥u∥W 5
2 (R;H) , j = 0, 1, 2, 3, 4, 5,

from the last inequality we have

∥P0u∥W 1
2 (R;H) ≤ const ∥u∥W 5

2 (R;H) . (2)



6 Conditions for the existence of smooth solutions

On the other hand,

∥P1u∥2W 1
2 (R;H) =

∥∥∥∥∥∥
3∑

j=1

Aju
(5−j)

∥∥∥∥∥∥
2

L2(R;H)

+

∥∥∥∥∥∥
3∑

j=1

AAju
(4−j)

∥∥∥∥∥∥
2

L2(R;H)

≤

≤

 3∑
j=1

∥∥∥AjA
−jAju(5−j)

∥∥∥
L2(R;H)

2

+

 3∑
j=1

∥∥∥AAjA
−(j+1)Aj+1u(4−j)

∥∥∥
L2(R;H)

2

≤

≤

 3∑
j=1

∥∥∥Aj A
−j
∥∥ ∥∥Aj u(5−j)

∥∥∥
L2(R;H)

2

+

 3∑
j=1

∥∥∥AAj A
−(j+1)

∥∥∥∥∥Aj+1 u(4−j)
∥∥∥
L2(R;H)

2

.

Since Aj ∈ L (Hj ,H) ∩ L (Hj+1,H1) , then the operators AjA
−j and AAjA

−(j+1),
j = 1, 2, 3, are bounded in H. Taking into account again the theorem on intermediate
derivatives [18], we obtain

∥P1u∥W 1
2 (R;H) ≤ const ∥u∥W 5

2 (R;H) . (3)

It follows from inequalities (2) and (3) that

∥Pu∥W 1
2 (R;H) ≤ ∥P0u∥W 1

2 (R;H) + ∥P1u∥W 1
2 (R;H) ≤ const ∥u∥W 5

2 (R;H) .

The theorem has been proven. J

Let us now study the solvability of the main part of equation (1).
The following theorem is true.

Theorem 2. The equation P0u(t) = f(t) has a unique smooth solution of the first order
u(t) for any f(t) ∈W 1

2 (R;H), and there is an inequality

∥u∥W 5
2 (R;H) ≤ const ∥f∥W 1

2 (R;H) .

Proof. Let f(t) ∈W 1
2 (R;H), i.e. the norm is finite:∥∥∥∥dfdt

∥∥∥∥2
L2(R;H)

+ ∥Af∥2L2(R;H) = ∥f∥2W 1
2 (R;H) .

Then it follows from Parseval’s equality that∥∥∥iλf̂(λ)∥∥∥2
L2(R;H)

+
∥∥∥Af̂(λ)∥∥∥2

L2(R;H)
< +∞,

where f̂(λ) is the Fourier transform of the function f(t). If we denote by û(λ) the Fourier
transform of the function u(t), then from P0u(t) = f(t) we have

P0 (iλ) û(λ) = f̂(λ)
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or

û(λ) = P−1
0 (iλ) f̂(λ), λ ∈ R, (4)

From here we can determine that

u(t) =
1√
2π

∫ +∞

−∞
P−1
0 (iλ) f̂(λ)eiλtdλ.

Let us show that u(t) is a smooth solution of the first order to the equation P0u(t) =
f(t).

Indeed, from Parseval’s equality, taking into account equality (4), it follows that

∥u∥2W 5
2 (R;H) =

∥∥∥∥d5udt5
∥∥∥∥2
L2(R;H)

+
∥∥A5u

∥∥2
L2(R;H)

=

=
∥∥iλ5û(λ)∥∥2

L2(R;H)
+
∥∥A5û(λ)

∥∥2
L2(R;H)

=

=
∥∥∥iλ5P−1

0 (iλ) f̂(λ)
∥∥∥2
L2(R;H)

+
∥∥∥A5P−1

0 (iλ) f̂(λ)
∥∥∥2
L2(R;H)

≤

≤ sup
λ∈R

∥∥λ4P−1
0 (iλ)

∥∥2
H→H

∥∥∥iλf̂(λ)∥∥∥2
L2(R;H)

+

+sup
λ∈R

∥∥A4P−1
0 (iλ)

∥∥2
H→H

·
∥∥∥Af̂(λ)∥∥∥2

L2(R;H)
. (5)

On the other hand, the spectral expansion of the operator A implies that

sup
λ∈R

∥∥λ4P−1
0 (iλ)

∥∥
H→H

= sup
λ∈R

sup
σ∈σ(A)

∣∣λ4(iλ+ σ)−3(−iλ+ σ)−1
∣∣ =

= sup
λ∈R

sup
σ∈σ(A)

∣∣∣λ4(iλ+ σ)−2
(
λ2 + σ2

)−1
∣∣∣ = sup

λ∈R
sup

σ∈σ(A)

λ4

(λ2 + σ2)
2 ≤ 1, (6)

sup
λ∈R

∥∥A4P−1
0 (iλ)

∥∥
H→H

= sup
λ∈R

sup
σ∈σ(A)

∣∣σ4(iλ+ σ)−3(−iλ+ σ)−1
∣∣ =

= sup
λ∈R

sup
σ∈σ(A)

σ4

(λ2 + σ2)
2 ≤ 1, (7)

where σ(A) denotes the spectrum of the operator A. Taking into account (6) and (7) in
inequality (5), we obtain:

∥u∥2W 5
2 (R;H) ≤

∥∥∥iλf̂(λ)∥∥∥2
L2(R;H)

+
∥∥∥Af̂(λ)∥∥∥2

L2(R;H)
= ∥f∥2W 1

2 (R;H) .

It is evident that u(t) satisfies the equation P0u(t) = f(t). Therefore, u(t) is a smooth
solution of the first order to the equation P0u(t) = f(t). The theorem has been proven.

J
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It follows from Theorem 2 that the norms ∥P0u∥W 1
2 (R;H) and ∥u∥W 5

2 (R;H) are equiva-

lent in the space W 5
2 (R;H). Therefore, by the theorem on intermediate derivatives [18],

the following numbers are finite:

nj = sup
0 ̸=u∈W 5

2 (R;H)

∥∥∥A4−ju(j)
∥∥∥
W 1

2 (R;H)
∥P0u∥−1

W 1
2 (R;H) , j = 1, 2, 3.

Here arises an interesting problem about the exact calculation of nj , j = 1, 2, 3. But first,
let us formulate the following lemma from [16], which we use in our further reasoning.

Lemma. Let β ∈
[
0, a−1

j

)
, where aj = 1

256j
j(4 − j)4−j , j = 1, 2, 3. Then the operator

pencils
P̃j(λ;β;A) =

(
−λ2E +A2

)
Pj(λ;β;A), j = 1, 2, 3, (8)

where
Pj(λ;β;A) =

(
−λ2E +A2

)4 − β (iλ)
2j
A8−2j , j = 1, 2, 3,

dependent on the parameter β (E is a unit operator), are invertible on the imaginary
axis and there are points ξ0,j ∈ R, j = 1, 2, 3, such that the characteristic polynomials

P̃j(iξ;β;σ) =
(
ξ2 + σ2

)
(
(
ξ2 + σ2

)4 − βξ2jσ8−2j), j = 1, 2, 3, σ ∈ σ(A),

satisfy the following properties:

P̃j (iξ0,j ;β;σ) > 0 for β ∈
[
0, a−1

j

)
, j = 1, 2, 3, σ ∈ σ(A);

P̃j (iξ0,j ;β;σ) = 0 for β = a−1
j , j = 1, 2, 3, σ ∈ σ(A);

P̃j (iξ0,j ;β;σ) < 0 for β > a−1
j , j = 1, 2, 3, σ ∈ σ(A).

Theorem 3. The following equalities take place:

nj = a
1/2
j , j = 1, 2, 3.

Proof. Let the functions u(t) ∈W 5
2 (R;H) have compact carriers and be infinitely differ-

entiable. Then by Parseval’s equality we have:

∥P0u∥2W 1
2 (R;H) − β

∥∥∥A4−ju(j)
∥∥∥2
W 1

2 (R;H)
=

=

∥∥∥∥−d4udt4 − 2A
d3u

dt3
+ 2A3 du

dt
+A4u

∥∥∥∥2
W 1

2 (R;H)

−

−β
∥∥∥A4−ju(j)

∥∥∥2
W 1

2 (R;H)
=

∥∥∥∥−d5udt5 − 2A
d4u

dt4
+ 2A3 d

2u

dt2
+A4 du

dt

∥∥∥∥2
L2(R;H)

+

+

∥∥∥∥−Ad4udt4 − 2A2 d
3u

dt3
+ 2A4 du

dt
+A5u

∥∥∥∥2
L2(R;H)

−
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−β
(∥∥∥A4−ju(j+1)

∥∥∥2
L2(R;H)

+
∥∥∥A5−ju(j)

∥∥∥2
L2(R;H)

)
=

=
∥∥∥(− (iξ)

5
E − 2 (iξ)

4
A+ 2 (iξ)

2
A3 + (iξ)A4

)
û(ξ)

∥∥∥2
L2(R;H)

+

+
∥∥∥(− (iξ)

4
A− 2 (iξ)

3
A2 + 2 (iξ)A4 +A5

)
û(ξ)

∥∥∥2
L2(R;H)

−

−β
(∥∥∥(iξ)j+1

A4−j û(ξ)
∥∥∥2
L2(R;H)

+
∥∥∥(iξ)j A5−j û(ξ)

∥∥∥2
L2(R;H)

)
=

=

∫ +∞

−∞

((
− (iξ)

5
E − 2 (iξ)

4
A+ 2 (iξ)

2
A3 + (iξ)A4

)
û(ξ),(

− (iξ)
5
E − 2 (iξ)

4
A+ 2 (iξ)

2
A3 + (iξ)A4

)
û(ξ)

)
H
dξ+

+

∫ +∞

−∞

((
− (iξ)

4
A− 2 (iξ)

3
A2 + 2 (iξ)A4 +A5

)
û(ξ),(

− (iξ)
4
A− 2 (iξ)

3
A2 + 2 (iξ)A4 +A5

)
û(ξ)

)
H
dξ−

−β
∫ +∞

−∞

(
(iξ)

j+1
A4−j û(ξ), (iξ)

j+1
A4−j û(ξ)

)
H

dξ−

−β
∫ +∞

−∞

(
(iξ)

j
A5−j û(ξ), (iξ)

j
A5−j û(ξ)

)
H

dξ =

=

∫ +∞

−∞

((
ξ2E +A2

)
(
(
ξ2E +A2

)4 − βξ2jA8−2j)û(ξ), û(ξ)
)
H
dξ, j = 1, 2, 3.

Thus, for any β ≥ 0 and sufficiently smooth u(t), we have the equalities

∥P0u∥2W 1
2 (R;H) − β

∥∥∥A4−ju(j)
∥∥∥2
W 1

2 (R;H)
=

=

∫ +∞

−∞

(
P̃j(iξ;β;A)û(ξ), û(ξ)

)
H

dξ, j = 1, 2, 3, (9)

where P̃j (iξ;β;A) are defined from the equalities (8). By the Lemma, at β ∈
[
0, a−1

j

)
the operator pencils P̃j(iξ;β;A) > 0, j = 1, 2, 3. Therefore, at β ∈

[
0, a−1

j

)
from (9) it

follows that

∥P0u∥2W 1
2 (R;H) − β

∥∥∥A4−ju(j)
∥∥∥2
W 1

2 (R;H)
> 0, j = 1, 2, 3.

Passing here to the limit as β → a−1
j , j = 1, 2, 3, we have∥∥∥A4−ju(j)

∥∥∥2
W 1

2 (R;H)
≤ aj ∥P0u∥2W 1

2 (R;H) , j = 1, 2, 3,
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or ∥∥∥A4−ju(j)
∥∥∥
W 1

2 (R;H)
≤ a

1/2
j ∥P0u∥W 1

2 (R;H) , j = 1, 2, 3,

i.e. nj ≤ a
1/2
j , j = 1, 2, 3. To prove the equalities nj = a

1/2
j , j = 1, 2, 3, we define the

functional

E(u) = ∥P0u∥2W 1
2 (R;H) − β

∥∥∥A4−ju(j)
∥∥∥2
W 1

2 (R;H)

in the space W 5
2 (R;H), and for ∀ε > 0 we find a vector-function uε(t) = gε(t)ψε, for

which E (uε) < 0, where ψε ∈ Dom(A10), gε(t) is a numeric function. For this purpose,
we write the inequality E (uε) < 0 in the form

E (uε) =

∫ +∞

−∞

(
P̃j

(
iξ; a−1

j + ε;A
)
ψε, ψε

)
|ĝε(ξ)|2 dξ < 0.

If A has at least one eigenvalue σ, then for ψε we choose the corresponding eigenvector
Aψε = σψε, ∥ψε∥ = 1. Then it is obvious that(

P̃j

(
iξ; a−1

j + ε;A
)
ψε, ψε

)
H

= P̃j

(
iξ; a−1

j + ε;σ
)
,

but by the Lemma ξ = ξ0,j , P̃j

(
iξ; a−1

j + ε;σ
)
< 0, ∀ε > 0. If the operator A does

not have an eigenvalue, then for any σ ∈ σ(A) and for any δ > 0 we can find a vector
ψδ (∥ψδ∥ = 1) such that for any s > 0

Asψδ = σsψδ + o(1, δ) for δ → 0, s > 0.

Then (
P̃j

(
iξ; a−1

j + ε;A
)
ψδ, ψδ

)
H

= P̃j

(
iξ; a−1

j + ε;σ
)
+ o(1, δ) for δ → 0.

For sufficiently small δ > 0, P̃ j

(
iξ; a−1

j + ε;σ
)
+ o(1, δ) < 0.

Thus, for some ξ = ξ0,j and ψε ∈ Dom
(
A10

)
, ε > 0(

P̃j

(
iξ; a−1

j + ε;A
)
ψε, ψε

)
< 0. (10)

Since
(
P̃j

(
iξ; a−1

j + ε;A
)
ψε, ψε

)
is a continuous function of the argument ξ, the inequal-

ity (10) holds for some ξ ∈ (η1, η2) . Let us now build the function gε(t) as follows. Let
ĝε(t) be infinitely differentiable function with a carrier in the interval (η1, η2) . Denote by

gε(t) =
1√
2π

∫ η2

η1

ĝε(ξ)e
iξtdξ

It’s obvious that gε(t) ∈W 5
2 (R). Then

E (uε) = E (gε(t)ψε) =

∫ η2

η1

(
P̃j

(
iξ; a−1

j + ε;A
)
ψε, ψε

)
|ĝε(ξ)|2dξ < 0,

thus, it is proved that nj = a
1/2
j , j = 1, 2, 3. The theorem has been proven. J
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The results obtained allow us to establish a theorem on the ”smoothly” regular solv-
ability of equation (1) in terms of its operator coefficients.

Theorem 4. Let A be a self-adjoint positive-definite operator in H and the operators

Aj ∈ L (Hj ,H) ∩ L (Hj+1,H1) , j = 1, 2, 3,

and the following inequality holds

3∑
j=1

max
{∥∥∥A4−jA

−(4−j)
∥∥∥
H→H

,
∥∥∥AA4−jA

−(5−j)
∥∥∥
H→H

}
nj < 1,

where nj , j = 1, 2, 3, are determined from Theorem 3. Then equation (1) is ”smoothly”
regularly solvable.

Proof. Using the notation introduced earlier, we represent equation (1) as an operator
equation

P0u(t) + P1u(t) = f(t), (11)

where f(t) ∈W 1
2 (R;H), u(t) ∈W 5

2 (R;H). By Theorem 1, the operator P = P0 +P1 is a
bounded operator from the spaceW 5

2 (R;H) into the spaceW 1
2 (R;H), and by Theorem 2,

the operator P0 mapsW 5
2 (R;H) isomorphically ontoW 1

2 (R;H). Then there is a bounded
inverse P−1

0 , operating from W 1
2 (R;H) into W 5

2 (R;H). If in equation (11) we make the
substitution u(t) = P−1

0 υ(t), where υ(t) ∈W 1
2 (R;H), then we obtain(

E + P1P
−1
0

)
υ(t) = f(t).

Now let us show that under the conditions of the theorem the norm of the operator
P1P

−1
0 is less than one. We have

∥∥P1P
−1
0 υ

∥∥
W 1

2 (R;H)
= ∥P1u∥W 1

2 (R;H) ≤
3∑

j=1

∥∥∥Aju
(4−j)

∥∥∥
W 1

2 (R;H)
=

=

3∑
j=1

(∥∥∥A4−ju
(j+1)

∥∥∥2
L2(R;H)

+
∥∥∥AA4−ju

(j)
∥∥∥2
L2(R;H)

) 1
2

≤

≤
3∑

j=1

(∥∥∥A4−jA
−(4−j)

∥∥∥2
H→H

∥∥∥A4−ju(j+1)
∥∥∥2
L2(R;H)

+

+
∥∥∥AA4−jA

−(5−j)
∥∥∥2
H→H

∥∥∥A5−ju(j)
∥∥∥2
L2(R;H)

) 1
2

≤

≤
3∑

j=1

max
{∥∥∥A4−jA

−(4−j)
∥∥∥
H→H

,
∥∥∥AA4−jA

−(5−j)
∥∥∥
H→H

}
×

×
(∥∥∥A4−ju(j+1)

∥∥∥ 2

L2(R;H)
+
∥∥∥A5−ju(j)

∥∥∥2
L2(R;H)

) 1
2

.
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Since ∥∥∥A4−ju(j)
∥∥∥
W 1

2 (R;H)
=

(∥∥∥A4−ju(j+1)
∥∥∥2
L2(R;H)

+
∥∥∥A5−ju(j)

∥∥∥2
L2(R;H)

) 1
2

,

then ∥∥P1P
−1
0 υ

∥∥
W 1

2 (R;H)
≤

≤
3∑

j=1

max
{∥∥∥A4−jA

−(4−j)
∥∥∥

H→H
,
∥∥∥AA4−jA

−(5−j)
∥∥∥
H→H

}∥∥∥A4−ju(j)
∥∥∥
W 1

2 (R;H)
≤

≤
3∑

j=1

max
{∥∥∥A4−jA

−(4−j)
∥∥∥
H→H

,
∥∥∥AA4−jA

−(5−j)
∥∥∥
H→H

}
nj ∥P0u∥W 1

2 (R;H) =

=

3∑
j=1

max
{∥∥∥A4−jA

−(4−j)
∥∥∥
H→H

,
∥∥∥AA4−jA

−(5−j)
∥∥∥
H→H

}
nj ∥υ∥W 1

2 (R;H) .

Thus,
∥∥P1P

−1
0

∥∥
W 1

2 (R;H)→W 1
2 (R;H)

< 1. Hence, the operator E+P1P
−1
0 has an inverse

in the space W 1
2 (R;H) and, therefore, u(t) can be defined by the formula

u(t) = P−1
0

(
E + P1P

−1
0

)−1
f(t),

at that

∥u∥W 5
2 (R;H) ≤

∥∥P−1
0

∥∥
W 1

2 (R;H)→W 5
2 (R;H)

∥∥∥(E + P1P
−1
0

)−1
∥∥∥
W 1

2 (R;H)→W 1
2 (R;H)

×

×∥f∥W 1
2 (R;H) ≤ const ∥f∥W 1

2 (R;H) .

The theorem has been proven. J

It follows from Theorem 4 that the operator P is an isomorphism between the spaces
W 5

2 (R;H) and W 1
2 (R;H).

Note that the main result of the paper was announced by the authors in [6].

References

1. Aliev A.R. On the solvability of boundary value problems for a class of operator-
differential equations with variable coefficients. Dokl. Akad. Nauk Azerb., 1998, 54
(5-6), pp. 9-13 (in Russian).

2. Aliev A.R. On the solvability of a class of operator differential equations of the second
order on the real axis. J. Math. Phys. Anal. Geom., 2006, 2 (4), pp. 347-357.

3. Aliev A.R. On the solvability of a fourth-order operator-differential equation with
multiple characteristic. Ukr. Math. J., 2014, 66 (5), pp. 781-791.

4. Aliev A.R., Gasymov A.A. On the correct solvability of the boundary-value problem
for one class operator-differential equations of the fourth order with complex charac-
teristics. Bound. Value Probl., 2009, 2009 (710386), pp. 1-20.



A.R. Aliev, N.L. Muradova 13

5. Aliev A.R., Mohamed A.S. On the well-posedness of a boundary value problem for
a class of fourth-order operator-differential equations. Differ. Equ., 2012, 48 (4), pp.
596-598.

6. Aliev A.R., Muradova N.L. On smooth solutions of a class of operator-differential
equations of the fourth order. Book of Abstracts of the Intern. Conf. Differential Equa-
tions and Related Topics dedicated to outstanding mathematician of I.G. Petrovskii,
24th Joint Session of Moscow Mathematical Society and I.G. Petrovskii Seminar, De-
cember 26-30, 2021, Moscow, Russia, pp. 159-160 (in Russian).

7. Aliev B.A., Yakubov Y. Fredholm property of boundary value problems for a fourth-
order elliptic differential-operator equation with operator boundary conditions. Differ.
Equ., 2014, 50 (2), 213-219.

8. Bruk V.M., Krys’ko V.A. Reduction of generalized S. P. Timoshenko equations to a
differential operator equation of hyperbolic type. Russ. Math. (Iz. VUZ), 2007, 51 (2),
pp. 68-70.

9. Dubinskii Yu.A. On some differential-operator equations of arbitrary order. Math.
USSR-Sb., 1973, 19 (1), pp. 1-21.

10. Favini A., Shakhmurov V., Yakubov Y. Regular boundary value problems for com-
plete second order elliptic differential-operator equations in UMD Banach spaces. Semi-
group Forum, 2009, 79 (1), pp. 22-54.

11. Favini A., Yakubov Ya. Regular boundary value problems for elliptic differential-
operator equations of the fourth order in UMD Banach spaces. Scientiae Math. Japon-
icae, 2009, 70 (2), pp. 183-204.

12. Gasymov A.A. On solvability of a class of complicated characteristic operator-
differential equations of fourth order. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech.
Math. Sci., 2008, 28 (1), pp. 49-54.

13. Gasymov M.G. On the theory of polynomial operator pencils. Dokl. Akad. Nauk
SSSR, 1971, 199 (4), pp. 747-750 (in Russian).

14. Gasymov M.G. The solvability of boundary value problems for a class of operator-
differential equations. Dokl. Akad. Nauk SSSR, 1977, 235 (3), pp. 505-508 (in Russian).

15. Gumbataliev R.Z. Normal solvability of boundary value problems for a class of fourth-
order operator-differential equations in a weighted space. Differ. Equ., 2010, 46 (5),
pp. 681–689.

16. Humbataliyev R.Z. On the conditions of existence of smooth solutions for a class of
operator-differential equations on the whole axis. Trans. Acad. Sci. Azerb. Ser. Phys.-
Tech. Math. Sci., 2003, 23 (1), pp. 59-66.

17. Kopachevsky N.D., Mennicken R., Pashkova Ju.S., Tretter C. Complete second order
linear differential operator equations in Hilbert space and applications in hydrodynam-
ics. Trans. Amer. Math. Soc., 2004, 356 (12), pp. 4737-4766.

18. Lions J.L., Magenes E. Non-Homogeneous Boundary Value Problems and Applica-
tions. Dunod, Paris, 1968; Mir, Moscow, 1971; Springer, Berlin, 1972.

19. Mirzoev S.S. Conditions for the well-defined solvability of boundary-value problems
for operator differential equations. Dokl. Akad. Nauk SSSR, 1983, 273 (2), pp. 292-295
(in Russian).

20. Mirzoev S.S. Multiple completeness of root vectors of polynomial operator pencils
corresponding to boundary-value problems on the semiaxis. Funct. Anal. Appl., 1983,



14 Conditions for the existence of smooth solutions

17 (2), pp. 151-153.
21. Mirzoev S.S. On completeness of root vectors of fourth order operator pencil corre-
sponding to eigenvalues of quarter plane. Azerb. J. Math., 2019, 9 (2), pp. 193-207.

22. Mirzoev S.S., Babayeva S.F. On a double-point boundary value problem for a second
order operator-differential equation and its application. Appl. Comput. Math., 2017, 16
(3), pp. 313-322.

23. Mirzoev S.S., Salimov M.Yu. On the completeness of elementary solutions of a class
of second-order operator-differential equations. Sib. Math. J., 2010, 51 (4), pp. 648-659.

24. Radzievskii G.V. The problem of the completeness of root vectors in the spectral
theory of operator-valued functions. Russ. Math. Surv., 1982, 37 (2), pp. 91-164.

25. Shkalikov A.A. Elliptic equations in Hilbert space and associated spectral problems.
Trudy Sem. Petrovsk., 1989, (14), pp. 140-224 (in Russian).

26. Shkalikov A.A. Perturbations of self-adjoint and normal operators with discrete spec-
trum. Russ. Math. Surv., 2016, 71 (5), pp. 907-964.

27. Teters G.A. Complex Loading and Stability of the Covers from Polymeric Materials.
Zinatne Press, Riga, Latvia, 1969 (in Russian).

28. Vlasov V.V., Shmatov K.I. Correct solvability of hyperbolic-type equations with
aftereffect in a Hilbert space. Proc. Steklov Inst. Math., 2003, 243 (4), pp.120-130.


